首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel rare earth coordination polymers, [La(pydc)2(H2O)][La(pydc)(H2O)2]·H2O (1) and [Sm(pydc)2(H2O)][Sm(pydc)(H2O)2]·H2O (2) (pydc=pyridine-2,6-dicarboxylate) were hydrothermally synthesized and characterized by the elemental analyses, IR spectra and TG analyses. Single crystal X-ray diffractions show that 1 and 2 are isostructural compounds. In the compounds of 1 and 2, the 1D lanthanide helical chains are connected each other by lanthanide binuclear dimer as building blocks to form a novel 3D covalent framework.  相似文献   

2.
Thirteen novel 3d-4f heteronuclear coordination polymers based on the pyridine-2,6-dicarboxylic acid (H2pda) and imidazole ligands, HIm[(pda)3MLn(Im)2(H2O)2]·3H2O (Im = imidazole; M = Co, Ln = Pr (1), Gd (2), Dy (3), Er (4); M = Mn, Ln = Pr (5), Sm (6), Gd (7), Dy (8), Er (9)), HIm[(pda)3CoSm(Im)2(H2O)2]·2H2O (10), [(Im)4M(H2O)2][(pda)4La2(H2O)2]·2H2O (M = Co (11), Mn (12)), and [(pda)6Co3Pr2(H2O)6]·6H2O (13), have been prepared and structurally characterized. X-ray crystallographic analyses revealed that these complexes display four different types of structures. Complexes 1-9 are isostructural, and possess 1-D chain structures constructed by alternately arrayed nine-coordinated Ln(III) (Ln = Pr, Sm, Gd, Dy, Er) and six-coordinated M(II) (M = Mn, Co) ions. Complex 10 exhibits a unique one-dimensional structure, in which two independent chains are parallel viewed down the a-axis and anti-parallel viewed down the c-axis. Complexes 11 and 12 are isostructural and display 1-D homometallic chain structures. Complex 13 is a 3D framework fabricated through PrN3O6 and CoO6 polyhedrons as building blocks. The variable-temperature solid-state dc magnetic susceptibilities of complexes 2, 3, 4, 9 and 13 have been investigated. Antiferromagnetic exchange interactions were determined for these five complexes.  相似文献   

3.
A series of metal-organic frameworks, namely [Ni(PDB)(H2O)]n (1), [Pb(PDB)(H2O)] · (H2O) (2), [Co2(PDB)2(bpy)2(H2O)4] · 4H2O (3) and [Co2(PDB)2(phen)2]n (4) (H2PDB = pyridine-3,5-dicarboxylic acid, bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline), have been synthesized based on pyridine-3,5-dicarboxylate acid and two neutral chelate ligands, with different metal ions such as NiII, CoII and PbII, under hydrothermal conditions. The framework structures of these polymeric complexes have been determined by the X-ray single crystal diffraction technique. In the four complexes, the pyridine-3,5-dicarboxylate acid ligand exhibits diverse coordination modes, which play an important role in the construction of metal-organic frameworks. The thermal analyses of these four complexes have been measured and discussed. In addition, complex 2 shows strong phosphorescent emission at room temperature and the magnetic measurement of the polymer of 4 reveals a typical antiferromagnetic exchange.  相似文献   

4.
Ten copper(II) complexes {[CuL1Cl] (1), [CuL1NO3]2 (2), [CuL1N3]2 · 2/3H2O (3), [CuL1]2(ClO4)2 · 2H2O (4), [CuL2Cl]2 (5), [CuL2N3] (6), [Cu(HL2)SO4]2 · 4H2O (7), [Cu(HL2)2] (ClO4)2 · 1/2EtOH (8), [CuL3Cl]2 (9), [CuL3NCS] · 1/2H2O (10)} of three NNS donor thiosemicarbazone ligands {pyridine-2-carbaldehyde-N(4)-p-methoxyphenyl thiosemicarbazone [HL1], pyridine-2-carbaldehyde-N(4)-2-phenethyl thiosemicarbazone [HL2] and pyridine-2-carbaldehyde N(4)-(methyl), N(4)-(phenyl) thiosemicarbazone [HL3]} were synthesized and physico-chemically characterized. The crystal structure of compound 9 has been determined by X-ray diffraction studies and is found that the dimer consists of two square pyramidal Cu(II) centers linked by two chlorine atoms.  相似文献   

5.
Synthetic, structural and catalysis studies of Ni(II) and Cu(II) complexes of a series of phenoxy-ketimine ligands with controlled variations of sterics, namely 2-[1-(2,6-diethylphenylimino)ethyl]phenol (1a), 2-[1-(2,6-dimethylphenylimino)ethyl]phenol (1b) and 2-[1-(2-methylphenylimino)ethyl]phenol (1c), are reported. Specifically, the ligands 1a, 1b and 1c were synthesized by the TiCl4 mediated condensation reactions of the respective anilines with o-hydroxyacetophenone in 21–23% yield. The nickel complexes, {2-[1-(2,6-diethylphenylimino)ethyl]phenoxy}2Ni(II) (2a) and {2-[1-(2,6-dimethylphenylimino)ethyl]phenoxy}2Ni(II) (2b), were synthesized by the reaction of the respective ligands 1a and 1b with Ni(OAc)2 · 4H2O in the presence of NEt3 as a base in 71–75% yield. The copper complexes, {2-[1-(2,6-diethylphenylimino)ethyl]phenoxy}2Cu(II) (3a), {2-[1-(2,6-dimethylphenylimino)ethyl]phenoxy}2Cu(II) (3b) and {2-[1-(2-methylphenylimino)ethyl]phenoxy}2Cu(II) (3c) were synthesized analogously by the reactions of the ligands 1a, 1b and 1c with Cu(OAc)2 · H2O in 70–87% yield. The molecular structures of the nickel and copper complexes 2a, 2b, 3a, 3b and 3c have been determined by X-ray diffraction studies. Structural comparisons revealed that the nickel centers in 2a and 2b are in square planar geometries while the geometry around the copper varied from being square planar in 3a and 3c to distorted square planar in 3b. The catalysis studies revealed that while the copper complexes 3a, 3b and 3c efficiently catalyze ring-opening polymerization (ROP) of l-lactide at elevated temperatures under solvent-free melt conditions, producing polylactide polymers of moderate molecular weights with narrow molecular weight distributions, the nickel counterparts 2a and 2b failed to yield the polylactide polymer.  相似文献   

6.
Three novel Cu(II)-pyrazine-2,3-dicarboxylate complexes with 1,3-propanediamine (pen), [Cu2(μ-pzdc)2(pen)2] · 2H2O (1), N,N,N,N′-tetramethylethylenediamine (tmen), {[Cu(μ-pzdc)(tmen)] · H2O}n(2), and 2,2′-bipyridine (bipy), {[Cu(μ-pzdc)(bipy)]·H2O}n(3) have been synthesized and characterized by means of elemental and thermal analyses, magnetic susceptibilities, IR and UV/vis spectroscopic studies. The molecular structures of dinuclear (1) and polynuclear (2 and 3) complexes have been determined by the single crystal X-ray diffraction technique. The pyrazine-2,3-dicarboxylate acts as a bridging ligand through oxygen atom of carboxylate group and N atom of pyrazine ring and one oxygen atom of neighboring carboxylate. It links the Cu(II) ions to generate a distorted square pyramidal geometry forming a one-dimensional (1D) chain. Adjacent chains of 1 and 2 are then mutually linked via hydrogen bonding interactions, which are further assembled to form a two and three-dimensional network, respectively. The chains of complex 3 are further constructed to form three-dimensional framework by hydrogen bonding, C–H?π and ring?ring stacking interactions. In the complexes, Cu(II) ions have distorted square pyramidal geometry. Thermal analyses properties and thermal decomposition mechanism of complexes have been investigated by using thermal analyses techniques (TG, DTG and DTA).  相似文献   

7.
The synthesis of tricyclic compounds on functionalized cyclam core is described. The addition of four methyl acrylate molecules and consecutive condensation of this derivative with ethylenediamine resulted in formation of 1,4,8,11-tetrakis(2-(N-(2-aminoethyl)carbamoyl)ethyl)-1,4,8,11-tetraazacyclotetradecane (3). Compound 3 was the substrate for further condensation with dialdehydes: iso-phthaldialdehyde and 2,6-pyridinedicarbaldehyde, resulting in spontaneous macrocycle ring closure to give tricyclic derivatives: 1,11:4,8-bis(benzene-1,3-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (4) in the reaction of 3 with iso-phthaldialdehyde and three isomers: 1,4:8,11-bis(pyridine-2,6-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (5A), 1,11:4,8-bis(pyridine-2,6-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (5B), and 1,8:4,11-bis(pyridine-2,6-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (5C) when 2,6-pyridinedicarbaldehyde was used. The compounds 4, 5B, and 5C were identified crystallographically. The isolated 5A converted in solution into the mixture of 5B and 5C as monitored by the 1H NMR spectroscopy. The tricycle 5 is able to accept two manganese(II) metal ions by reacting with manganese(II) dichloride with simultaneous diprotonation of 5. Structure of the resulting Mn2(5BH2)Cl6·(CH3OH)2(H2O)2 was determined crystallographically.  相似文献   

8.
Three new Cu(II) compounds of pyridine-2,6-dicarboxylic acid (H2pdc) with meta-substituted pyridines as additional ligands have been synthesized and structurally characterised using X-ray diffraction. Two of them are mononuclear compounds, i.e. [Cu(pdc)(3acpyr)(H2O)] (1) (3acpyr = 3-acetylpyridine) and [Cu(pdc)(3HOp)(H2O)](H2O)2 (2) (3HOp = 3-hydroxypyridine). The third compound is polynuclear, i.e. [Cu(pdc)(μ-3HOmp-κN,O)]n (3) (3HOmp = 3-(hydroxymethyl)pyridine). The three compounds are also characterised by IR, EPR and ligand field spectroscopy. The geometry around the Cu(II) ions is distorted square pyramidal for compounds 1 and 2 and distorted octahedral for compound 3. The lattice of compound 1 is organised by an intra-sheet hydrogen-bond pattern generating double layers. Compound 2 has a lattice arranged by the two water molecules in the lattice with complicated 2D O-H?O intra-sheet hydrogen bonding motifs.The zig-zag chains in compound 3 are further organised in layers, due to the axial coordination at Cu(II), forming a so-called (4, 3) ladder-like one-dimensional coordination polymer. These ladders are interconnected by hydrogen bonding.  相似文献   

9.
A novel versatile tridentate 3-(aminomethyl)naphthoquinone proligand, 3-[N-(2-pyridylmethyl)aminobenzyl]-2-hydroxy-1,4-naphthoquinone (HL), was obtained from the Mannich reaction of 2-hydroxy-1,4-naphthoquinone (Lawsone) with 2-aminomethylpyridine (amp) and benzaldehyde. The reactions of HL with CuCl2·2H2O yielded two novel dinuclear copper(II) complexes, [Cu(L)(H2O)(μ-Cl)Cu(L)Cl] (1b), [CuCl(L)(μ-Cl)Cu(amp)Cl] (2) and a polymeric compound, [Cu(L)Cl)]n (1a), whose relative yields were sensitive to temperature, reagents concentration and presence of base. The crystalline structures of 1b and 2 were determined by X-ray diffraction studies. The two copper atoms in complex 1b are connected by a single chloro bridge with a Cu?Cu separation of 4.1342(8) Å and Cu(1)–Cl(1)–Cu(2) angle of 109.31(4)°. In complex 2 the two copper atoms are held together by a chloro and a naphthalen-2-olate bridges [Cu(1)–Cl(2)–Cu(2) and Cu(1)–O(1)–Cu(2) angles being 83.31(3) and 109.70(9)°, respectively, and the Cu?Cu separation, 3.3476(9) Å]. As expected, variable-temperature magnetic susceptibility measurements of complex 1b showed weak antiferromagnetic intramolecular coupling between the copper(II) centers, with J = −5.7 cm−1, and evidenced for complex 2 strong antiferromagnetic coupling, with J ∼ −120 cm−1. Furthermore, the magnetic behaviour of compound 1a suggested an infinite 1D coordination polymeric structure in which the copper(II) centers are connected by Cl–Cu–Cl bridges. Solution data (UV–Vis spectroscopy and cyclic voltammetry) indicated structural changes of 2 and 1a in CH3CN, and evidenced conversion of polymer 1a into dimer 1b.  相似文献   

10.
A novel proton transfer compound (H2Ppz)(HDipic)2 (I) obtained from 2-(piperazin-1-yl)ethanol (Ppz) and pyridine-2,6-dicarboxylic acid (H2Dipic) and its Cu(II) complex (H2Ppz)[Cu(Dipic)2] · 6H2O (II) have been prepared and characterized by elemental, spectral (1H and 13C NMR, IR and Uv-Vis) and thermal analyses. Magnetic measurement and single crystal X-ray diffraction methods have also been applied for compound II. The molecular structure of II consists of one 1-(2-hydroxyethyl)piperazine-1,4-diium cation, one bis(pyridinium-2,6-dicarboxylate)Cu(II) anion and six uncoordinated water molecules. In complex II, the copper ion coordinates to two oxygen and one nitrogen atoms of two pyridine-2,6-dicarboxylate molecules forming an octahedral conformation. Furthermore, the synthesised compounds (I and II) were screened for their antimicrobial activities against Gram (?) (Escherichia coli and Pseudomonas aeruginosa) and Gram (+) (Staphylococcusaureus and Bacillus cereus). The results were reported, discussed and compared with the corresponding starting materials (H2Dipic and Ppz).  相似文献   

11.
A series of oxovanadium(IV) complexes: TpVO(pzH)(2,4-Cl–C6H3–OCH2COO) (1), TpVO(pzH)(C6H5–OCH2COO) (2), TpVO(pzH)(p-Cl–C6H4–COO) (3), TpVO(pzH)(3,5-NO2–C6H3–COO) (4), Tp∗VO(pzH∗)(p-Cl–C6H4–COO) (5) and Tp∗VO(pzH∗)(p-Cl–C6H4–COO) · CH3OH (6) (Tp = hydrotris(pyrazolyl)borate, pzH = pyrazole, Tp∗ = hydrotris(3,5-dimethylpyrazolyl)borate, pzH∗ = 3,5-dimethylpyrazole) were synthesized and their crystal structures were determined by X-ray diffraction. In all the complexes, the vanadium ions are in a distorted-octahedral environment with a N4O2 donor set. Hydrogen bonding interaction exists in each complex. Complexes 1 and 2 are hydrogen-bonded dimers. Dimeric units of 2 are connected to one another via weak inter-molecular C–H···O interactions to form a 2D network on the bc-face. In 36 there exist intramolecular N–H···O hydrogen bonds between the neutral pyrazole/3,5-dimethylpyrazole and the uncoordinated carboxyl oxygen atom. In addition, the catalytic activity of complex 2 in a bromination reaction in phosphate buffer with phenol red as a trap was evaluated by UV–Vis spectroscopy. Furthermore, the elemental analyses, IR spectra and thermal stabilities were recorded.  相似文献   

12.
The novel title compounds, (pipzH2)1.5(pydcH)3·3.7H2O, 1, (pipzH2)[Zr(pydc)3]·8H2O, 2 and (pipzH2)[Ce(pydc)3]·8H2O, 3 in which pydcH2 is pyridine-2,6-dicarboxylic acid and pipz is piperazine were obtained in aqueous solution. The compounds were characterized by IR, 1H NMR and 13C NMR spectroscopy, elemental analyses, and X-ray crystallography. Compound 1 is resulted from proton transfer between pydcH2 and pipz. However, compounds 2 and 3 are resulted from complexation of 1 and corresponding metallic salts. Both compounds 2 and 3 contain three pyridine-2,6-dicarboxylate species as tridentate ligands, one piperazinediium as counter ion, and eight-uncoordinated water molecules in the asymmetric unit. In both structures each M(IV) is coordinated in a distorted tricapped trigonal prism geometry by three nitrogen and six oxygen atoms of carboxylate groups of three (pydc)2− fragments. In the crystal structures of 1, 2 and 3, extensive O–H···O, N–H···O and C–H···O hydrogen bonds as well as electrostatic forces, C–H···π, C–O···π and π–π stacking play important roles in stabilizing structures. The geometrical parameters of the [M(pydc)3]2− anionic complexes, where M = Ce(IV), Zr(IV) have been optimized with the B3LYP method of density functional theory (DFT) and ab initio Hartree–Fock (HF) methods for comparison. In addition, we have studied the structures of (pydc)2− anion and its mono and doubly protonated forms, (pydcH) and pydcH2. The electronic properties of the anionic complexes and ligands have been investigated based on the natural bond orbital (NBO) analysis at the B3LYP method which verifies that the synergistic effect has been occurred in the title complexes. In solution study of 2, the stoichiometry and stability constant of complexation of pipz, pydc, pydc–pipz proton transfer system and Zr(IV) ion in aqueous solution were investigated by potentiometric method.  相似文献   

13.
14.
The bivalent zinc and cadmium complexes of two Schiff bases N-(2-pyridylmethyl)pyridine-2-carbaldimine (L1), N-(2-pyridylmethyl)pyridine-2-methylketimine (L2), tridentate ligands with an N3 chromophore and coordinating with two five-membered chelate rings, were synthesized. Complexes [Zn(L1)(NO3)2] (1), [Zn(L2)(NO3)2] (2), [Cd(L1)(NO3)2(H2O)] (3) and [Cd(L2)(NO3)2(CH3OH)] (4) were characterized by X-ray crystallography. In 1 and 2, Zn(II) has a distorted square-pyramidal geometry where as in 3 and 4, Cd(II) possesses a pseudo-pentagonal-bipyramidal geometry. The following trends in the bond lengths are observed: M–Nim < M–Npy; Zn–N > Zn–O; Cd–N < Cd–O. The final residues from the thermogravimetric analysis are ZnO and CdO, the SEM studies revealed, respectively, their porous and spherical natures. The average activation energy (E) for the loss of pyridine rings obtained from the Friedman fitting of the DSC data, for 1, 2, 3, and 4 are 193.8(2), 114.5(3), 127.1(4), and 63.7(3) kJ mol−1 and their logarithmic pre-exponential factor (A) are 11.22, 5.31, 6.88, and 2.09, respectively.  相似文献   

15.
The varying coordination modes of the title ligand, L [5-methyl-1-(pyridin-2-yl)-N′-[pyridin-2-ylmethylidene]pyrazole-3-carbohydrazide] towards the different metal centers is reported by preparation and characterization of Cu(II), Zn(II) and Cd(II) complexes, [Cu(L)NO3.H2O](NO3) (1) [Zn(L)2](ClO4)2·2DMF (2) and [Cd(L)(I)2] (3) respectively. In 1, the neutral ligand serves as tetradentate 4 N donor where both pyridine and pyrazole nitrogen atoms of pyridyl–pyrazole part are coordinatively active, leaving the carbonyl oxygen of the carbohydrazide part inactive. The same pyridine and pyrazole N atoms remain abstained from the coordination process towards the Zn(II) and Cd(II) metal centers. For 2 and 3 the ligand behaves as a tridentate NNO donor where the two nitrogen atoms come from azomethine, pyridine of pyridine-2-carbaldehyde parts and O from carbonyl oxygen atoms (carbohydrazide part). The complex 1 and 2 are distorted octahedral while complex 3 adopts distorted square pyramidal geometry. All the complexes are X-ray crystallographically characterized.  相似文献   

16.
A series of complexes has been synthesized based on pyridine-2,6-dicarboxylate (L1) as the bridging ligand and 5-(4-bromophenyl)-2,4-bipyridine (L2) as the pendant with different metal ions such as NiII, CoII, and CuII, under hydrothermal conditions. In nickel and cobalt complexes [M(L1)(L2)2 · H2O]n (M = Ni2+ or Co2+), the metal ions are bridged by L1 to form 1D coordination zigzag polymeric chains with L2 pendants possessing hexa-coordinated distorted octahedral geometries. While the copper ions are penta-coordinated by L1 and L2 with distorted square pyramidal geometries forming the tetranuclear cluster with the formula [Cu4(L1)4(L2)4] · 2H2O. It has been found that both the structure and magnetic property of these complexes are metal ions dependent. Intramolecular antiferromagnetic interactions were observed in the nickel and cobalt 1D coordination polymers, while ferromagnetic coupling was found in the tetranuclear copper cluster. Density functional theory calculations suggested that the O–C–O bridges of L1 in a basal–apical mode are responsible for intracluster intermetallic ferromagnetic exchange for the tetranuclear copper cluster.  相似文献   

17.
A new series of DTPA-N,N″-bis(amide) ligands functionalized by alkyl carboxylates on the amide side-arms (1a1l) and their Gd(III) complexes of the type [Gd(1)(H2O)] · xH2O (2a2l) were synthesized and characterized by analytical and spectroscopic techniques. Potentiality of 2a2l as contrast agent for magnetic resonance imaging (MRI CA) was investigated by measuring some relevant physicochemical properties such as (i) the protonation constants of 1a1l, (ii) thermodynamic and conditional stability constants of 2a2l, (iii) the selectivity (pGd) of 1a1l for the Gd(III) ion over the endogenous metal ions such as Zn(II), Ca(II), and Cu(II), and (iv) the relaxivities (R1 and R2) of 2a2l in aqueous and aqueous HP-β-CD solutions. Comparative studies reveal that most of new Gd(III) complexes show enhanced thermodynamic stability and selectivity as compared with those of [Gd(DTPA-BMA)(H2O)] (DTPA-BMA = N,N″-di(methylcarbamoylmethyl)diethylenetriamine-N,N′,N″-triacetate). Also enhanced with 1a1l (except 1f and 1h) is affinity for Gd(III) as compared with [DTPA-BMA]3− under physiological conditions. The relaxivities (R1 and R2) of aqueous solutions of 2a2l, on the other hand, drop significantly as compared with [Gd(DTPA-BMA)(H2O)] although they increase dramatically (6–10 fold) in aqueous hydroxypropyl-β-cyclodextrin (HP-β-CD) solutions.  相似文献   

18.
19.
Three Co(II) and Cu(II)-pyridine-2,5-dicarboxylate (pydc) proton transfer compounds with 1,4-butanediamine (ben) and 2,2-dimethylpropane-1,3-diamine (dmpen), trans-(H2ben)[Co(pydc)2(H2O)2]·4H2O (1), trans-(H2dmpen)[Co(pydc)2(H2O)2]·2H2O (2) and (H2ben)2[Cu2(μ-pydc)4(H2O)2] (3) have been synthesized and characterized by the methods of elemental, spectroscopic (IR and UV-Vis), thermal (TG/DTG, DTA) analysis, magnetic measurement and single crystal X-ray diffraction. The crystallographic analysis revealed that the complexes consist of [Co(pydc)2(H2O)2]2− anion, bis(protonated) diamine cation (H2ben for 1 and H2dmpen for 2) and four and two crystal water molecules, respectively. The Co(II) ions are coordinated by two pydc and two aqua ligands. The bis(deprotonated) pydc ligands coordinate to the Co(II) ions through the nitrogen atom of pyridine ring and the oxygen atom of carboxylate group, creating a chelate ring. The distorted octahedral geometries are completed by two trans aqua ligands at axial positions. The molecular structure of the complex 3 consists of dinuclear [Cu2(μ-pydc)4(H2O)2]4− units and bis(protonated) 1,4-butanediammonium cation. In the structure, each Cu(II) ion is coordinated by two nitrogen and two oxygen atoms from two pydc ligands and one oxygen atom from aqua ligand, forming a distorted square pyramidal geometry.  相似文献   

20.
Reaction of silver(I) halides with PPh3 in acetonitrile and then with pyridine-2-thione (pySH) chloroform (1:1:1 molar ratio) has yielded sulfur bridged dimers of general formula, [Ag2X2(μ-S-pySH)2(PPh3)2] (X = Cl, 1, Br, 2). Both these complexes have been characterized using analytical data, NMR spectroscopy and single crystal X-crystallography. The central Ag2S2 cores form parallelograms with unequal Ag–S bond distances (2.5832(8), 2.7208(11) Å) in 1 and (2.6306(4), 2.6950(7) Å) in 2, respectively. The Ag?Ag contacts of compounds 1 and 2 are 3.8425(8) and 3.8211(4) Å, respectively. The angles around Ag (in the range 87.19(2)–121.71(2)° in 1 and 87.81(2)–121.53(2)° in 2) reveal highly distorted tetrahedral geometry. There are inter dimer π–π stacking interactions between pyridyl rings (inter ring distances of 3.498 and 3.510 Å in complexes 1 and 2, respectively). The solution state 31P NMR spectroscopy has shown the existence of both monomers and dimers. The studies reveal relatively weaker intramolecular –NH?Cl hydrogen bonding in case of AgCl vis-à-vis that in CuCl which favored both a monomer and a dimer with AgCl, and only a monomer with CuCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号