首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new asymmetric tripodal tetraamine ligands, 2-((bis(2-aminoethyl)amino)methyl)benzenamine (L2) and 2-(((2-aminoethyl)(3-aminopropyl)amino)methyl)benzenamine (L3) were synthesized and characterized. [1+1] Macrocyclic Schiff-base complexes containing 1,2-diphenoxyethane head units and a 2-aminobenzyl pendant arm, were synthesized as [MnL4(MeOH)](ClO4)2 (1), [MnL5(MeOH)](ClO4)2 (2), [CdL4(H2O)](NO3)2 (3) and [CdL5(H2O)](NO3)2 (4) from the metal ion templated cyclocondensation reactions of 2-[2-(2-formylphenoxy)ethoxy]benzaldehyde with the (L2) or (L3) tripodal tetraamine ligands. The crystal structure determination of (1) and (4) showed that the complex cations that had formed consisted of pentagonal bipyramidally coordinated Mn(II) and Cd(II) ions, centrally located in a N3O2 macrocycle, with one 2-aminobenzyl pendant arm. Supporting ab initio HF-MO calculations have been undertaken using the standard 3-21G and 6-31G basis sets.  相似文献   

2.
Two mononuclear and one dinuclear copper(II) complexes, containing neutral tetradentate NSSN type ligands, of formulation [CuII(L1)Cl]ClO4 (1), [CuII(L2)Cl]ClO4 (2) and [CuII2(L3)2Cl2](ClO4)2 (3) were synthesized and isolated in pure form [where L1 = 1,2-bis(2-pyridylmethylthio)ethane, L2 = 1,3-bis(2-pyridylmethylthio)propane and L3 = 1,4-bis(2-pyridylmethylthio)butane]. All these green colored copper(II) complexes were characterized by physicochemical and spectroscopic methods. The dinuclear copper(II) complex 3 changed to a colorless dinuclear copper(I) species of formula [CuI2(L3)2](ClO4)2,0.5H2O (4) in dimethylformamide even in the presence of air at ambient temperature, while complexes 1 and 2 showed no change under similar conditions. The solid-state structures of complexes 1, 2 and 4 were established by X-ray crystallography. The geometry about the copper in complexes 1 and 2 is trigonal bipyramidal whereas the coordination environment about the copper(I) in dinuclear complex 4 is distorted tetrahedral.  相似文献   

3.
Two new branched pentadentate amines (N5), 3,7-bis(2-pyridylmethyl)-5,5-dimethyl-3,7-diazaheptane-1-amine (1) and 4,8-bis(2-pyridylmethyl)-6,6-dimethyl-4,8-diaza octane-1-amine (2) have been prepared. These have been used to synthesis two new Schiff base complexes containing a pyridine and 2-pyridylmethyl pendant arm, by template [1+1] condensation of pyridine-2-carbaldehyde with the amines in the presence of Mn(II) in methanol. Elemental and spectral results are used to characterize the complexes and their structures are confirmed by single crystal X-ray diffraction studies. The structure of MnL1(ClO4)2 indicates that in the solid state the Mn(II) ion adopts a slightly distorted octahedral geometry. The crystal structure of [Ni(1)(MeCN)](ClO4)2 is also reported and exhibits a slightly distorted octahedral geometry. Also the synthesized complexes were screened for their antibacterial activity against Escherichia coli (Lio), Serratia marcescens (PTCC 1330), Staphylococcous aureus (ATCC 6633), and Proteus vulgaris (Lio) and results showed that the all complexes have antibacterial effects and [NiL1](ClO4)2, [MnL2](ClO4) and [MnL1](ClO4)2 have more effective ones against E. coli.  相似文献   

4.
Ten copper(II) complexes {[CuL1Cl] (1), [CuL1NO3]2 (2), [CuL1N3]2 · 2/3H2O (3), [CuL1]2(ClO4)2 · 2H2O (4), [CuL2Cl]2 (5), [CuL2N3] (6), [Cu(HL2)SO4]2 · 4H2O (7), [Cu(HL2)2] (ClO4)2 · 1/2EtOH (8), [CuL3Cl]2 (9), [CuL3NCS] · 1/2H2O (10)} of three NNS donor thiosemicarbazone ligands {pyridine-2-carbaldehyde-N(4)-p-methoxyphenyl thiosemicarbazone [HL1], pyridine-2-carbaldehyde-N(4)-2-phenethyl thiosemicarbazone [HL2] and pyridine-2-carbaldehyde N(4)-(methyl), N(4)-(phenyl) thiosemicarbazone [HL3]} were synthesized and physico-chemically characterized. The crystal structure of compound 9 has been determined by X-ray diffraction studies and is found that the dimer consists of two square pyramidal Cu(II) centers linked by two chlorine atoms.  相似文献   

5.
A series of mononuclear and binuclear cyclometalated platinum(II) complexes containing new terdentate meta-bis(2-pyridoxy)benzene ligands: 3,5-bis(2-pyridoxy)toluene (L1H) and 3,5-bis(2-pyridoxy)-2-dodecylbenzene (L2H): [Pt(L1)Cl] (1), [Pt(L2)Cl] (2), [Pt(L1)(CH3CN)](ClO4) (3), {[Pt(L1)]2(μ-dppm)}(ClO4)2 (4), {[Pt(L2)]2(μ-dppm)}(ClO4)2 (5), {[Pt(L1)]2(μ-pyrazole)}(ClO4) (6), {[Pt(L2)]2(μ-pyrazole)}(ClO4) (7), {[Pt(L1)]2(μ-imidazole)}(ClO4) (8) and {[Pt(L2)]2(μ-imidazole)}(ClO4) (9), have been synthesized and characterized. These ligands are coordinated to platinum(II) in a “pincer”-like manner and the presence of pyridyl donors enhances the availability of the ligand π orbitals for electronic transition. Spectroscopic properties of these cyclometalated complexes were studied. While the non-coplanar nature of the ligands hinders ligand-ligand and metal-metal interactions in these cyclometalated complexes, the presence of long hydrocarbon side chain on ligand L2H seems to alleviate such hindrance. Intermolecular π-π, and possibly Pt-Pt interactions were observed in complex 2 at high concentration.  相似文献   

6.
By using the neutral bidentate nitrogen-containing ligands; bis(3,5-dimethyl-1-pyrazolyl)methane (L0″), bis(3,5-diisopropyl-1-pyrazolyl)methane (L1″), bis(3-tertiary-butyl-5-isopropyl-1-pyrazolyl)methane (L3″), and bis(3,5-ditertiary-butyl-1-pyrazolyl)methane (L4″), the copper(II) nitrato complexes [Cu(L0″)2(NO3)]NO3 (1NO3), [Cu(L0″)(NO3)2] (2), [Cu(L1″)(NO3)2] (3), [Cu(L3″)(NO3)2] (4), and [Cu(L4″)(NO3)2] (5), chloro complexes [Cu(L0″)2Cl]2(CuCl4) (6CuCl4), [Cu(L0″)2Cl]2(Cu2Cl6) (6Cu2Cl6), [Cu(L1″)Cl2] (7), and [Cu(L3″)Cl2] (8), nitrito complexes [Cu(L0″)(ONO)2] (9) and [Cu(L1″)(ONO)2] (10), and the complexes with perchlorate ions [Cu(L0″)2(CH3OH)](ClO4)2 (11ClO4) and [Cu(L1″)2(H2O)](ClO4)2 (12ClO4) were systematically synthesized and fully characterized by X-ray crystallography and by IR, far-IR, UV–Vis absorption, and ESR spectroscopy. In comparison with the obtained complexes with four bis(pyrazolyl)methanes having different bulkiness at pyrazolyl rings, the second coordination sphere effects on the ligands are discussed in detail. Moreover, the structures and physicochemical properties of these obtained complexes are compared with those of the related complexes with the neutral tridentate tris(pyrazolyl)methane ligand.  相似文献   

7.
Treatment of either RuHCl(CO)(PPh3)3 or MPhCl(CO)(PPh3)2 with HSiMeCl2 produces the five-coordinate dichloro(methyl)silyl complexes, M(SiMeCl2)Cl(CO)(PPh3)2 (1a, M = Ru; 1b, M = Os). 1a and 1b react readily with hydroxide ions and with ethanol to give M(SiMe[OH]2)Cl(CO)(PPh3)2 (2a, M = Ru; 2b, M = Os) and M(SiMe[OEt]2)Cl(CO)(PPh3)2 (3a, M = Ru; 3b, M = Os), respectively. 3b adds CO to form the six-coordinate complex, Os(SiMe[OEt]2)Cl(CO)2(PPh3)2 (4b) and crystal structure determinations of 3b and 4b reveal very different Os-Si distances in the five-coordinate complex (2.3196(11) Å) and in the six-coordinate complex (2.4901(8) Å). Reaction between 1a and 1b and 8-aminoquinoline results in displacement of a triphenylphosphine ligand and formation of the six-coordinate chelate complexes M(SiMeCl2)Cl(CO)(PPh3)(κ2(N,N)-NC9H6NH2-8) (5a, M = Ru; 5b, M = Os), respectively. Crystal structure determination of 5a reveals that the amino function of the chelating 8-aminoquinoline ligand is located adjacent to the reactive Si-Cl bonds of the dichloro(methyl)silyl ligand but no reaction between these functions is observed. However, 5a and 5b react readily with ethanol to give ultimately M(SiMe[OEt]2)Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6a, M = Ru; 6b, M = Os). In the case of ruthenium only, the intermediate ethanolysis product Ru(SiMeCl[OEt])Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6c) was also isolated. The crystal structure of 6c was determined. Reaction between 1b and excess 2-aminopyridine results in condensation between the Si-Cl bonds and the N-H bonds with formation of a novel tridentate “NSiN” ligand in the complex Os(κ3(Si,N,N)-SiMe[NH(2-C5H4N)]2)Cl(CO)(PPh3) (7b). Crystal structure determination of 7b shows that the “NSiN” ligand coordinates to osmium with a “facial” arrangement and with chloride trans to the silyl ligand.  相似文献   

8.
Three Cd(II) macroacyclic Schiff base complexes [CdL4(NO3)2] (4), [CdL5(NO3)2] (5), [CdL6(NO3)2] (6) were prepared by template condensation of 2-pyridinecarboxaldehyde with N1-(2-nitrobenzyl)-N1-(2-aminoethyl)ethane-1,2-diamine (L1), N1-(2-nitrobenzyl)-N1-(2-aminoethyl)propane-1,3-diamine (L2) or N1-(2-nitrobenzyl)-N1-(3-aminopropyl)propane-1,3-diamine (L3), in the presence of cadmium metal ion, respectively. Three Cd(II) complexes with L1, L2 and L3 were also synthesized. All complexes have been studied with IR, 1H NMR, 13C NMR, DEPT, COSY, HMQC and microanalysis. Two of these complexes, [CdL4(NO3)2] (4) and [CdL1(NO3)2] (1) have been characterized through X-ray crystallography. In complex 4, the Cd is in a six-coordinate environment comprised of the ligand N4-donor set and two oxygen atoms of two nitrate groups. In the polyamine complexes (1, 2 and 3) Cd and ligand are in a ratio of 1:1. Supporting ab initio HF-MO calculations have been undertaken using the standard 3-21G and 6-31G basis sets.  相似文献   

9.
Nickel(II) complexes of quinoline-2-carbaldehyde N(4),N(4)-(butane-1,4-diyl) thiosemicarbazone (HL1) and 2-benzoylpyridine N(4),N(4)-(butane-1,4-diyl) thiosemicarbazone (HL2) have been synthesized and physico-chemically characterized by means of partial elemental analyses, molar conductance measurements, magnetic measurements, electronic and infrared spectral studies. Three complexes were given the formulae [Ni(HL1)2]Cl2 (1), [Ni(HL2)L2]ClO4 · 7H2O (2) and [NiL2Cl] · 0.5H2O (3). The structure of compound 1 has been solved by single crystal X-ray crystallography and is found to be distorted octahedral. Compound 2, when crystallized in DMSO solution, got deprotonated to form a new compound [Ni(L2)2] (2a), with a distorted octahedral Ni(II) center. In compound 1, HL1 coordinates to the metal in the thione form, while in compounds 2a and 3, HL2 coordinates in its deprotonated thiolate form.  相似文献   

10.
The coordination behaviour of a series of pyridyl azamacrocyclic ligands, some of them containing cyanomethyl and cyanoethyl pendant-arms, towards Mn(II) ion was studied. All the complexes were characterized by microanalysis, LSI mass spectrometry, IR, UV-Vis spectroscopy and magnetic measurements. Crystal structures of [MnL1][MnBr4] (1), [MnL3][MnBr4] · 2CH3CN (3), [Mn2L5Br4] · 2CH3CN (5) and [Mn2L6Br4] (6) complexes have been determined. The X-ray studies show the presence of an ionic mixed octahedral-tetrahedral complex for 1 and 2, with the manganese ion of the cation complex, endomacrocyclicly coordinated by the six nitrogen donor atoms from the macrocyclic backbone in a distorted octahedral geometry. Instead, the complexes 5 and 6 are dinuclear, and both manganese ions are coordinated by one pyridinic and two amine nitrogen atoms from the macrocyclic backbone and two bromide ions, being the geometry around the metal better described as distorted square pyramidal. In all cases, the nitrile pendant-arms do not show coordination to the metal ion.  相似文献   

11.
The syntheses, structures and ligand conformations of the complexes trans-Cu(L1)2(ClO4)2, (L1 = N-(2-pyrimidinyl)-P,P-diphenyl-phosphinic amide), 1, [trans-Co(L1)2(CH3OH)2](ClO4)2·O(C2H5)2, 2, [trans-Co(L2)2(H2O)2](ClO4)2·2CH3OH, (L2 = N-(2-pyridinyl)-P,P-diphenyl-phosphinic amide), 3, [cis-Co(L2)2(NO3)](NO3), 4, and [Ag(L3)(NO3)(CH3CN)], (L3 = N-(6-methyl-2-pyridinyl)-P,P-diphenyl-phosphinic amide), 5, are reported. The L1 and L2 ligands in the monomeric complexes 1-4 chelate the metal centers through the pyrimidyl/pyridyl nitrogen atoms and the phosphinic amide oxygen atoms, whereas the L3 ligands in complex 5 bridge the metal centers, forming a 1-D zigzag chain. The chelating L2 ligands in complexes 3 and 4 adopt cis conformations and the bridging L3 ligand in complex 5 adopts a trans conformation, respectively.  相似文献   

12.
Two new reduced Schiff base ligands, [HL1 = 4-{2-[(pyridin-2-ylmethyl)-amino]-ethylimino}-pentan-2-one and HL2 = 4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical Schiff bases derived from 1:1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L1)]ClO4 (1), [Cu(L1)]ClO4 (2), [Ni(L2)]ClO4 (3), and [Cu(L2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L1 and L2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes. Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two CuII complexes (2 and 4) exhibit both irreversible reductive (CuII/CuI; Epc, −1.00 and −1.04 V) and oxidative (CuII/CuIII; Epa, +1.22 and +1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated CuI species for both the complexes are unstable and undergo disproportionation.  相似文献   

13.
The reaction of low-valent ruthenium complexes with 2,6-bis(imino)pyridine ligand, [η2-N3]Ru(η6-Ar) (1) or {[N3]Ru}2(μ-N2) (2) with amine hydrochlorides generates six-coordinate chlorohydro ruthenium (II) complexes with amine ligands, [N3]Ru(H)(Cl)(amine) (4). Either complex 1 or 2 activates amine hydrochlorides 3, and the amines coordinate to the ruthenium center to give complex 4. This is a convenient and useful synthetic approach to form ruthenium complexes with amine and hydride ligands using amine hydrochloride.  相似文献   

14.
The bimetallic [Ni2(H2L2)2](ClO4)4 (1), [Ni2(HL2)(H2L2)](ClO4)3 (2) and [Zn2(H2L2)2](BF4)4 (3) complexes (H2L2 = N,N2-bis[(1E)-1-(2-pyridyl)ethylidene]propanedihydrazide) were synthesized and characterized. The structure of complexes (1) and (2) was established by X-ray analysis. NMR spectroscopy was used for the characterization of complex (3). The complexes (1) and (2) were obtained from the same synthetic reaction and two crystal types of these complexes have been isolated during the fractional crystallization process.  相似文献   

15.
On reaction of different copper(II) salts with 3,4-bis(2-pyridylmethylthio)toluene (L) having neutral tetradentate NSSN donor set in different chemical environments, two mononuclear copper(II), one dinuclear copper(I) and one dinuclear copper(II) complexes, formulated as [CuII(L)(H2O)2](NO3)2 (1), [CuII(pic)2] (2), [CuI2(L)2](ClO4)2 (3) and [CuII2(L)2Cl2](ClO4)2 (4), respectively, were isolated in pure form [where pic = picolinate]. All the complexes were characterized by physicochemical and spectroscopic methods. The product of the reactions are dependent on the counter anion of copper(II) salts used as reactant and on the reaction medium. Complexes 1 and 4 were obtained with nitrate and perchlorate copper(II) salts, respectively. On the other hand, C–S bond cleavage was observed in the reaction of L with copper(II) chloride to form in situ picolinic acid and complex 2. Dinuclear complexes 3 and 4 were separated out when copper(II) perchlorate was allowed to react with L in methanol and in acetonitrile, respectively, under aerobic condition. The X-ray diffraction analysis of the dinuclear complex 3 shows a highly distorted tetrahedral geometry about each copper ion. Complex 4 is converted to 3 in acetonitrile in presence of catechol. The spectral study of complex 4 with calf thymus DNA is indicative of a groove binding mode interaction.  相似文献   

16.
The complexes [1-(9-anthracenylmethyl)-3-octylimy]2Hg[HgCl4] (2a) (imy = imidazol-2-ylidene) and [1-(9-anthracenylmethyl)-3-butylbimy]2AgPF6 (2b) (bimy = benzimidazol-2-ylidene) have been prepared and characterized. Crystal packing of complex 2a revealed that 1D polymeric chains are formed by [1-(9-anthracenylmethyl)-3-octylimy]Hg and [HgCl4]2− through weak Hg…Cl bonds. The packing diagram of 2b showed that 1D supramolecular chains are formed by both benzimidazole ring head to tail π–π stacking interactions and anthracene ring face-to-face π–π stacking interactions.  相似文献   

17.
Two octahedral complexes [Ni(HL1)2](ClO4)2 (1) and [Ni(HL2)2](ClO4)2 (2) and a square planar complex [Ni(HL3)]ClO4 (3) have been prepared, where [HL1 = 3-(2-amino-ethylimino)-butan-2-one oxime, HL2 = 3-(2-amino-propylimino)butan-2-one oxime] and H2L3 = 3-[2-(3-hydroxy-1-methyl-but-2-enylideneamino)-1-methyl-ethylimino]-butan-2-one oxime. All the complexes have been characterized by elemental analyses, spectral studies and room temperature magnetic moment measurements. The molecular structures of all three compounds were elucidated on the basis of X-ray crystallography; complexes 1 and 2 are seen to be the mer isomers.  相似文献   

18.
Mononuclear nickel(II) complexes with two ONS donor thiosemicarbazone ligands {salicylaldehyde 3-hexamethyleneiminyl thiosemicarbazone [H2L1] and salicylaldehyde 3-tetramethyleneiminyl thiosemicarbazone [H2L2]} have been prepared and physico-chemically characterized. IR and electronic spectra of the complexes have been obtained. The thiosemicarbazones bind to the metal as dianionic ONS donor ligands in all the complexes except in [Ni(HL1)2] (1). In compound 1, the ligand is coordinated as a monoanionic (HL) one. The magnetic susceptibility measurements indicate that all the complexes are mononuclear and are diamagnetic. The complexes were given the formulae [Ni(HL1)2] (1), [NiL1py] (2), [NiL1α-pic] (3), [NiL1γ-pic] · H2O (4), [NiL2py] (5) and [NiL2γ-pic] (6). The structures of compounds 2 and 3 have been solved by single crystal X-ray crystallography and were found to be distorted square planar in geometry with coordination of azomethine nitrogen, thiolato sulfur, phenolato oxygen and pyridyl nitrogen atoms.  相似文献   

19.
Mononuclear copper(II) complexes, [Cu L1] (ClO4)2 (1), [Cu L2] (ClO4)2 (2) and [Cu L3] (ClO4)2 (3) with quadridentate Schiff base ligands L1 (N,N′-bis-pyridin-2-ylmethyl-butane-1,4-diimine), L2 (N,N′-bis-pyridin-2-ylmethyl-pentane-1,5-diimine) and L3 (N,N′-bis-pyridin-2-ylmethyl-hexane-1,6-diimine) have been synthesized and characterized. The crystal structure data of 1 reveals the existence of the complex in two different geometries, namely a square pyramid and a distorted octahedron, which eventually leads to the packing of the molecule into helical and anti-parallel structures respectively. Absorption titration studies with calf thymus DNA for all three complexes are suggestive of groove binding with binding constant values for 1, 2 and 3 being 2.6 ± 0.2 × 104 M−1, 11.5 ± 0.2 × 104 M−1 and 1.83 ± 0.2 × 104 M−1 respectively. Control cleavage experiments using pBR 322 plasmid DNA and distamycin suggest minor groove binding for these complexes. In the presence of ascorbic acid, the complexes show efficient DNA cleavage, the order of efficiency being 1 > 2 ≅ 3.  相似文献   

20.
The new potentially bidentate pyrazole-phosphinite ligands [(3,5-dimethyl-1H-pyrazol-1-yl)methyl diphenylphosphinite] (L1) and [2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl diphenylphosphinite] (L2) were synthesised and characterised. The reaction of L1 and L2 with the dimeric complexes [Ru(η6-arene)Cl2]2 (arene = p-cymene, benzene) led to the formation of neutral complexes [Ru(η6-arene)Cl2(L)] (L = L1, L2) where the pyrazole-phosphinite ligand is κ1-P coordinated to the metal. The subsequent reaction of these complexes with NaBPh4 or NaBF4 produced the [Ru(η6-p-cymene)Cl(L2)][BPh4] and [Ru(η6-benzene)Cl(L2)][BF4] compounds which contain the pyrazole-phosphinite ligand κ2-P,N bonded to ruthenium. All the complexes were fully characterised by analytical and spectroscopic methods. The structure of the complex [Ru(η6-p-cymene)Cl(L2)][BPh4] was also determined by a X-ray single crystal diffraction study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号