首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and characterization of Co(II), Ni(II) and Cu(II) complexes of 2-acetyl-2-thiazoline hydrazone (ATH) are reported. Elemental analysis, IR spectroscopy, UV–Vis–NIR diffuse reflectance and magnetic susceptibility measurement, as well as, in the case of copper complex EPR spectroscopy, have been used to characterize the complexes. In addition, the structure of [NiCl2(ATH)2] (2) and [{CuCl(ATH)}2(μ-Cl)2] (3) have been determined by single crystal X-ray diffraction. In all complexes, the ligand ATH bonds to the metal ion through the imine and thiazoline nitrogen atoms. X-ray data indicates that the environment around the nickel atom in 2 may be described as a distorted octahedral geometry with the metallic atom coordinated to two chlorine atoms, two thiazoline nitrogen atoms and two imino nitrogen atoms. With regard to 3, it can be said that its structure consists of dimeric molecules in which copper ions are bridge by two chlorine ligands. The geometry about each copper ion approximates to a distorted square pyramid with each copper atom coordinated to one thiazoline nitrogen atom, one imine nitrogen atom, one terminal chlorine ligand and two bridge chlorine ligands. In compound 3, magnetic susceptibility measurements in the temperature range 2–300 K show an intradimer antiferromagnetic interaction (J = −7.5 cm−1).  相似文献   

2.
New adducts of ethylenediamine (en), N,N-dimethylethylenediamine (ndmen) and N,N′-dimethylethylenediamine (dmen) with squarate as counter-ions were synthesized and characterized by physico-chemical methods (IR and UV/vis spectroscopy, magnetic susceptibility and thermoanalytical measurements). The crystal structure of tris(ethylenediamine)cobalt(III) 1.5 squarate hexahydrate, [Co(en)3](sq)1.5 · 6H2O, was determined by single crystal X-ray diffraction. Co(III), Ni(II) and Cu(II) ions in the monomeric octahedral tris(ethylenediamine)cobalt(III) 1.5 squarate hexahydrate (1), tris(ethylenediamine)nickel(II) squarate 0.5 hydrate (2) and diaquabis(ethylenediamine)copper(II) squarate dihydrate (3) are chelated by ethylenediamines through two amine nitrogen atoms. Cu(II) atoms in the diaquabis(ndmen)copper(II) squarate (4) and diaquabis(dmen)copper(II) squarate (5) monomeric octahedral complexes are coordinated by ndmen and dmen molecules through two amine nitrogen atoms in a bidentate chelating manner. Water molecules complete the octahedral coordination. The orange (1), violet (4) and violet (5) complexes upon heating transform to claret, green and green species on dehydration, respectively, which revert immediately after cooling in the open atmosphere. The violet (3) complex upon heating loses water molecules yielding a deep blue dehydrated species, which on further heating undergoes an exothermic phase transition accompanied by thermochromism, deep blue to brown in the solid state. The decomposition mechanism and thermal stability of the solid complexes are interpreted in terms of their structures. The final decomposition products – the respective metal oxides – were identified by IR spectroscopy.  相似文献   

3.
The molecular and crystal structures of the following compounds 2-styryl-1,3-benzothiazole, sb, (1), Hg2Cl4(sb)3 (2), 1,3-bis(1,3-benzothiazol-2-yl)-2,4-diphenylcyclobutane (3) 1,3-bis(1,3-benzothiazol-2-yl)-2,4-bis(4-chlorophenyl)cyclobutane (4) and HgBr2(sb)2 (5) were determined by single-crystal X-ray diffractometry. The crystal structure of 1 consists of discrete sb molecules which are essentially planar. The dimeric molecules of 3 and 4 are characterized by a cyclobutane ring. In both isolated complexes 2 and 5, sb acts as a neutral monodentate ligand coordinated to the mercury atom through the thiazolyl nitrogen atom. The dinuclear complex 2 is characterized by the unique example of two differently coordinated Hg(II) ions bridged via a non-symmetrical linear Cl bridge. The first one is coordinated by one terminal and one bridging Cl ion and two thiazolyl nitrogen atoms in the form of distorted tetrahedron. The second one is bonded to two terminal Cl ions and the bridging Cl ion and one thiazolyl nitrogen atom in a 2+2 manner. In complex 5 the Hg(II) ion, which is situated on a crystallographic twofold axis, is tetrahedrally coordinated by two Br ions and two thiazolyl nitrogen atoms. Both complexes are characterized by stronger mercury-to-halide covalent bonds than mercury-to-nitrogen bonds, which are regarded as contacts shorter than the van der Waals radii sum of the corresponding atoms. The geometry of the sb ligand in both complexes 2 and 5 has not been changed remarkably from that one in the uncoordinated state due to not so strong bonds formation with the Hg(II) ion.  相似文献   

4.
Copper(II) complexes of 3-((2-(alkylthio)phenylazo)-2,4-pentanedione, tridentate O, N, S donor ligands, are described in this work. Chloride bridged copper(II) polymers (1) and thiocyanato bridged copper(II) dimmers (2) are characterized by a single crystal X-ray diffraction study. The complexes show antiferromagnetic interactions, with J = −0.5 ± 0.1 cm−1 (1a) and −25.8 ± 0.5 cm−1 (2b), which implies stronger coupling in the –SCN-bridging compound. The spectra, redox and magnetism are explained by DFT studies.  相似文献   

5.
The protonation equilibria of 2-amino-N-(2-oxo-2-(2-(pyridin-2-yl)ethyl amino)ethyl)acetamide ([H2(556)–N]) and the complexation of this ligand with Cu(II) Ca(II), Zn(II) and Ni(II) have been studied by glass electrode potentiometry and UV–visible spectrophotometry. From pH ∼2.00–11.00, five models for Cu(II) with the following complexes; MLH, ML, MLH−1, MLH−2 and MLH−3 were generated and observed to describe the experimental data equally well as far as the statistical criteria were concerned. The MLH−2 complex predominates at physiological pH in all five models, while the MLH−1 complex species exists only at low concentration in two models. The coordination in the MLH−2 complex suggested the involvement of one amino, two deprotonated peptides and one pyridyl nitrogen atoms. Molecular mechanics (MM) calculations confirmed the MLH−2 complex as the most stable species. Speciation calculations, using a blood plasma model, predicted that the Cu(II)–[H2(556)–N] complex is able to mobilize Cu(II). Octanol/water partition of CuLH−2 showed that 30% of the complex went into the octanol phase, hence promoting percutaneous absorption of copper. The complex is a poor mimic of native copper–zinc superoxide dismutase.  相似文献   

6.
The stability constants and coordination modes of the mixed-ligand complexes formed by copper(II) ion and ethylenediamine as a primary ligand and methioninehydroxamic acid (Metha) or histidinehydroxamic acid (Hisha) as a secondary ligand L were determined by potentiometric titration, UV–Vis and EPR spectroscopy. The obtained results suggest the formation of mixed-ligand species in basic solution with 4N coordination – both amine and hydroxamic nitrogens of Metha or Hisha (NH2, Nha) and two amine nitrogens of en (2 × NH2) in the equatorial plane.  相似文献   

7.
A new series of complexes of the type bis(N-substituted-salicydenaminato)copper(II) (1–9), have been synthesized and characterized by IR, UV–Vis and elemental analysis methods. The molecular structure of bis(N-2-bromophenyl-salicydenaminato)copper(II) (6), was determined using X-ray crystallography. There are two independent molecules in the structure. Each shows a neutral, mononuclear, four-coordinate, square-planar trans-Cu[N2O2] geometry and, in each, the Cu atom and the ligating atoms are coplanar. The chelating N–Cu–O angle is 91.39(11)° for molecule one and 91.20(11)° for molecule two, whereas the non-chelating N–Cu–O angles are 88.61(11) and 88.80(11)°, respectively. The trans-N–Cu–N and trans-O–Cu–O bond angles are 180°. The electronic absorption spectra of copper(II) complexes (1–9), indicate that the d–d band energy is dependent on the nature and position of substituent on phenyl ring of the salicyldenimine ligand. The UV–Vis spectra in various solvents were measured and a relationship between absorption spectra and dielectric constant of the solvents is reported.  相似文献   

8.
A new reagent, 1,3-bis(2-benzothiazolyl-diazoamino)benzene (BBTAB), was first synthesized and characterized by elemental analysis, 1H NMR and IR spectra. The inclusion complex of BBTAB with β-cyclodextrin (β-CD) was formed. BBTAB in the inclusion complex or alone reacts with copper(II) to form chelate complex in a slight basic medium, which results in drastic or slight fluorescence enhancement, respectively. The spectrofluorimetric method of trace amount of copper(II) based on the enhancement of inclusion complex by binding with copper(II) was established. The excitation and emission wavelengths of the BBTAB/β-CD/Cu system are 389 and 480 nm, respectively. Under optimal conditions, a linear response of BBTAB/β-CD to copper(II) is obtained in the range of 3.0 × 10−7 to 1.0 × 10−5 mol L−1, and the detection limit is determined to be 1.2 × 10−8 mol L−1. The method is selective, sensitive and simple, and has been used for the determination of trace copper(II) in water samples with satisfactory results. The possible response mechanism of BBTAB/β-CD or BBTAB to copper(II) and the role of β-CD in the drastic enhancement of fluorescence of BBTAB/β-CD/Cu system have been discussed.  相似文献   

9.
One-pot reactions of cadmium(II) perchlorate/nitrate, Schiff bases (pbap/pfap) and pseudohalides (sodium azide/ammonium thiocyanate) in a 2:1:4 molar ratio in MeOH–MeCN solvent mixtures at room temperature result in a dinuclear compound [Cd2(pbap)(OH2)2(N3)4] (1) [pbap = N-(1-pyridin-2-ylbenzylidene)-N-[2-(4-{2-[(1-pyridin-2-ylbenzylidene)amino]ethyl}piperazin-1-yl)ethyl]amine] and a polymeric compound [Cd2(pfap)(μ1,3-NCS)(μ1,3-SCN)(NCS)2]n (2) [pfap = N-(1-pyridin-2-ylformylidene)-N-[2-(4-{2-[(1-pyridin-2ylformylidene)amino]ethyl}piperazin-1-yl)ethyl]-amine]. X-ray crystal structural analyses reveal a bis(tridentate) congregation behaviour of the hexadentate blocker (pbap/pfap) encapsulating two metal centers. Each cadmium(II) center in 1 and 2 is in a distorted octahedral geometry with CdN5O and CdN5S chromophores, respectively. In 1, the dinuclear units participate in intermolecular O–H?N hydrogen bonding between bound water O atoms and terminal azide N atoms, in combination with C–H?π interactions, resulting in a 3D supramolecular network with an intramolecular Cd?Cd distance of 6.473(2) Å. In the crystal lattice, the covalent 1D chain of 2 is further engaged in face-to-face π?π interactions from two terminal pyridine rings, which stabilizes the chain with an intradimer Cd?Cd separation of 6.640(5) Å. Both the complexes display intraligand 1(π–π) fluorescence and intraligand 3(π–π) phosphorescence in glassy solutions.  相似文献   

10.
A synthetic strategy for obtaining structurally flexible hybrid iron(II) carboranoclatrochelates functionalized with biorelevant groups, based on a combination of a 1,3-dipolar cycloaddition reaction with nucleophilic substitution of an appropriate chloroclathrochelate precursor, was developed. In its first stage, a stepwise substitution of the dichloroclathrochelate precursor with amine N-nucleophiles of different natures in various solvents was performed. One of its two chlorine atoms with morpholine or diethylamine in dichloromethane gave reactive monohalogenoclathrochelate complexes functionalized with abiorelevant substituents. Further nucleophilic substitution of their remaining chlorine atoms with propargylamine in DMF led to morpholine- and diethylamine-functionalized monopropargylamine cage complexes, the molecules of which contain the single terminal C≡C bond. Their “click” 1,3-cycloaddition reactions in toluene with ortho-carborane-(1)-methylazide catalyzed by copper(II) acetate gave spacer-containing di- and tritopic iron(II) carboranoclatrochelates formed by a covalent linking between their different polyhedral(cage) fragments. The obtained complexes were characterized using elemental analysis, MALDI-TOF mass, UV-Vis, 1H, 1H{11B}, 11B, 11B{1H}, 19F{1H} and 13C{1H}-NMR spectra, and by a single crystal synchrotron X-ray diffraction experiment for the diethylamine-functionalized iron(II) carboranoclathrochelate. Its encapsulated iron(II) ion is situated almost in the center of the FeN6-coordination polyhedron possessing a geometry intermediate between a trigonal prism and a trigonal antiprism with a distortion angle φ of approximately 28°. Conformation of this hybrid molecule is strongly affected by its intramolecular dihydrogen bonding: a flexibility of the carborane-terminated ribbed substituent allowed the formation of numerous C–H…H–B intramolecular interactions. The H(C) atom of this carborane core also forms the intermolecular C–H…F–B interaction with an adjacent carboranoclathrochelate molecule. The N–H…N intermolecular interaction between the diethylamine group of one hybrid molecule and the heterocyclic five-membered 1H-[1,2,3]-triazolyl fragment of the second molecule of this type caused formation of H-bonded carboranoclathrochelate dimers in the X-rayed crystal.  相似文献   

11.
Using 2D proton-coupled gHSQC pulse sequences in addition to 1D 15N NMR experiments of 15N labeled systems, 15N NMR chemical shifts of a range of transition metal amido and amine complexes were determined. Tungsten(II), ruthenium(II), platinum(IV) and copper(I) complexes with aniline and their anilido variants were studied and compared to free aniline, lithium anilido and anilinium tetrafluoroborate. Upon coordination of aniline to transition metals, upfield chemical shifts of 20–60 ppm were observed. Deprotonation of the amine complexes to form amido complexes resulted in downfield chemical shifts of 40–60 ppm for all of the complexes except for the tungsten d4 system. For the tungsten(II) complexes, the cationic aniline complex displayed a downfield shift of approximately 56 ppm relative to the neutral anilido complex. The change in chemical shift for amine to amido conversion is proposed to depend on the ability of the amido ligand to π-bond with the metal center, which influences the magnitude of the paramagnetic screening term.  相似文献   

12.
The enamine (HEAID) obtained from aniline and 2-acetyl-1,3-indandione (2AID) behaves as a bidentate ligand in coordination with copper (II) ion. Two types of crystals, apparently different in shape, were isolated and studied by single-crystal X-ray diffraction. The X-ray data for the brown rhombic crystals of compound 1 shows a mononuclear complex of Cu(II) coordinated with two EAID-anions, Cu(EAID)2. The X-ray data for the green crystals of compound 2 shows a dinuclear Cu(II) complex with two OH groups acting as bridging ligands, [Cu2(μ-OH)2(EAID)2]. In both cases the ligand coordinates after deprotonation of the amine group.  相似文献   

13.
A series of macrobicyclic unsymmetrical binuclear copper(II) complexes of compartmental ligands were synthesized from the Schiff base condensation of 1,8[N,N′-bis{(3-formyl-2-hydroxy-5-methyl)benzyl}]-1,4,8,11- tetraaza-5,5,7,12,12,14-hexa methylcyclotetradecane with diamines like 1,2-diamino ethane, 1,3-diamino propane, 1,4-diaminobutane, 1,2-diaminobenzene and 1,8-diaminonaphthalene. The complexes were characterized by elemental and spectral analysis. Electrochemical studies of the copper(II) complexes show two irreversible one-electron reduction processes around E1pc = −0.70 to −1.10 V and E2pc = −0.98 to −1.36 V. ESR spectra of the binuclear copper(II) complexes show a broad signal at g = 2.10 and μeff values in the range 1.46–1.59 BM, which convey the presence of antiferromagnetic coupling. Cryomagnetic investigation of the binuclear complexes [Cu2L3(ClO4)](ClO4) and [Cu2L4(ClO4)](ClO4) show that the observed −2J values are 144 and 216 cm−1, respectively. The observed initial rate (Vin) for the catalytic hydrolysis of p-nitrophenyl phosphate by the binuclear copper(II) complexes were in the range 1.8 × 10−5 to 2.1 × 10−5 Ms−1. The initial rate (Vin) for the catalytic oxidation of catechol to o-quinone by the binuclear copper(II) complexes were in the range 2.7 × 10−5 to 3.5 × 10−5 Ms−1. The copper(II) complexes have been found to promote cleavage of plasmid pBR 322 DNA from the supercoiled form I to the open circular form II.  相似文献   

14.
Preparations, crystal structures, electronic and CD spectra are reported for new chiral Schiff base complexes, bis(N-R-1-naphthylethyl-3,5-dichlorosalicydenaminato)nickel(II), copper(II), and zinc(II). Nickel(II) and copper(II) complexes adopt a square planar trans-[MN2O2] coordination geometry with Δ(R,R) configuration. While zinc(II) complex adopts a compressed tetrahedral trans-[MN2O2] one with Δ(R,R) configuration and exhibits an emission band around 21 000 cm−1 (λex = 27 000 cm−1). Absorption and CD spectra were recorded in N,N′-dimethylformamide, acetone, methanol, chloroform, and toluene solutions to discuss relationships between spectral shifts of d–d and π–π bands by structural changes of the complexes and physical properties of the solvents. Moreover, we have attempted to investigate conformational changes of the complexes induced by photoisomerization of azobenzene, 4-hydroxyazobenzene, or 4-aminoazobenzene, in various solutions under different conditions. Weak intermolecular interactions between complexes and azobenzenes are important for the phenomenon by conformational changes of bulky π-conjugated moieties of the ligands.  相似文献   

15.
Five copper(II) complexes with N(4)-ortho, N(4)-meta and N(4)-para-tolyl thiosemicarbazones derived from 2-formyl and 2-acetylpyridine were obtained and thoroughly characterized. The crystal structure of N(4)-meta-tolyl-2-acetylpyridine thiosemicarbazone (H2Ac4mT) was determined, as well as that of its copper(II) complex [Cu(2Ac4mT)Cl], which contains an anionic ligand and a chloride in the coordination sphere of the metal. The in vitro antimicrobial activities of all thiosemicarbazones and their copper(II) complexes were tested against Salmonella typhimurium and Candida albicans. Upon coordination a substantial decrease in the minimum inhibitory concentration, from 225 to 1478 μmol L−1 for the thiosemicarbazones to 5–30 μmol L−1 for the complexes was observe against the growth of Salmonella typhimurium and from 0.7–26 to 0.3–7 μmol L−1 against the growth of C. albicans, suggesting that complexation to copper(II) could be an interesting strategy of dose reduction.  相似文献   

16.
The novel nickel(II) (1) and copper(II) (2) complexes bearing 2′-(4′,6′-di-tert-butylhydroxy-phenyl)-1,4,5-triphenyl imidazole ligand have been synthesized and characterized. The molecular structure analyses of complexes 1 and 2 indicated that Ni(II) centre in 1 adopts a distorted tetrahedral coordination geometry with a dihedral angle of 85.2° between Ni(1)O(1)N(1) plane and Ni(1)O(1A)N(1A) plane, while the Cu(II) centre in 2 represents a distorted square planar coordination geometry with a cis-N2O2 arrangement of the donor atoms, the dihedral angle being 32° between Cu(1)O(1)N(1) plane and Cu(1)O(1A)N(1A) plane. After activation with methylaluminoxane (MAO), both Ni(II) and Cu(II) complexes can be used as catalysts for the addition polymerization of norbornene (NB). The polynorbornenes (PNBs) are produced with very high polymerization activity (108 g PNB mol−1 Ni h−1) for Ni(II) complex and moderate catalytic activity (105 g PNB mol−1 Cu h−1) for Cu(II) complex, respectively. The high molecular weight polynorbornenes (106) are obtained for complexes 1 and 2. Moreover, the distinct effects of polymerization temperature and Al/M ratio on catalytic activities and molecular weights of polymers are discussed.  相似文献   

17.
Four new copper (II)‐manganese (II) heterobinuclear complexes bridged byN, N'‐bis[2‐(dimethylamino)ethyl)]oxamido dianion (dmoxæ) and end‐capped with 1, 10‐phenanthroline (phen), 5‐methyl‐1, 10‐phenanthroline (Mephen), diaminoethane (en) or 1,3‐di‐aminopropane (pn). respectively, namely, [Cu(dmoxae)MnL2] (CIO4)2 (L=phen, Mephen, en, pn), have been synthesized and characterized by elemental analyses, IR, electronic spectral studies, and molar conductivity measurements. The electronic reflectance spectrum indicates the presence of spin exchange‐coupling interaction between bridged copper(II) and manganese (II) ions. The cryomagnetic measurements (4.2‐300 K) of [Cu(dmoxae)Mn(phen)2](CIO4)2 (1) and [Cu(dmoxae)Mn(Mephen)2](CIO4)2(2) complexes demonstrated an antiferromagnetic interaction between the adjacent manganese(II) and copper (II) ions through the oxamido‐bridge within each molecule. On the basis of spin Hamiltonian, H= ‐ 2JS1. S2. the magnetic analysis was carried out for the two complexes and the spin‐coupling constant (J) was evaluated as ?35.9 cm?1 for 1 and ‐ 32.6 cm?1 for 2. The influence of methyl substitutions in the amine groups of the bridging ligand on magnetic interactions between the metal ions of this kind of complexes is also discussed.  相似文献   

18.
A new dinuclear compound, [Cu2(bpdo)2Br4], (in which bpdo = 2,2′-Bipyridine-1,1′-dioxide), has been synthesized and fully characterized, including the X-ray and the magnetic susceptibility. Each copper(II) ion in the dinuclear compound has a distorted square pyramidal geometry with the basal plane formed by two oxygen atoms of two ligand molecules which are bridging between the Cu ions with Cu–O distances of 2.021(2) and 2.039(2) Å and two bromide atoms with Cu–Br distances of 2.3577(6) and 2.3665(7) Å. The fifth position is occupied by a non bridging oxygen atom of a ligand with a Cu–O distance of 2.197(2) Å. The distance between the Cu ions is 3.334 Å, while the Cu–O–Cu angle is 110.37(9)°. The magnetic susceptibility measurements (from 5 to 350 K) agree with a very strong antiferromagnetic interaction with a large singlet–triplet splitting (J) of −905 cm−1. At high T (above 250 K) a triplet powder EPR is observed.  相似文献   

19.
Binary and ternary complexes of copper(II) involving N,N,N′,N′-tetramethylethylene-diamine (Me4en) and various biologically relevant ligands containing different functional groups are investigated. The ligands (L) used are dicarboxylic acids, amino acids, peptides and DNA unit constituents. The ternary complexes of amino acids, dicarboxylic acids or peptides are formed by simultaneous reactions. The results showed the formation of Cu(Me4en)(L) complexes with amino acids and dicarboxylic acids. The effect of chelate ring size of the dicarboxylic acid complexes on their stability constants was examined. Peptides form both Cu(Me4en)(L) complexes and the corresponding deprotonated amide species Cu(Me4en)(LH−1). The ternary complexes of copper(II) with (Me4en) and DNA are formed in a stepwise process, whereby binding of copper(II) to (Me4en) is followed by ligation of the DNA components. DNA constituents form both 1:1 and 1:2 complexes with Cu(Me4en)2+. The concentration distribution of the complexes in solution was evaluated. [Cu(Me4en)(CBDCA)] and [Cu(Me4en)(malonate)] are isolated and characterized by elemental analysis and infrared measurements.  相似文献   

20.
A yellow compound which was crystallised from a solution of (6,8,8,14,16,16-hexamethyl-1,5,9,13-tetraazacyclohexadeca-5,13-diene)bis(isothiocyanato)nickel(II) in aqueous zinc(II) chloride has cations with singlet ground state nickel(II) in square-planar coordination by the nitrogen atoms of the macrocycle. The asymmetric unit has two similar cations. The N4 group of one cation is near coplanar (r.m.s. displacements ±0.009(1) Å, with Ni displaced by 0.048(1) Å from this plane) while the other cation has significant tetrahedral twisting of the N4 group (r.m.s. displacements of N atoms ±0.126(2) Å, with Ni displaced by 0.027(2) Å from this plane). The mean Ni–N distances are Ni–Namine = 1.950(6) and Ni–Nimine = 1.897(6) Å. Both cations have N-meso configurations with saddle conformations, with the substituted chelate rings in boat conformations tilted to one side of the NiN4 ‘plane’ and the unsubstituted chelate rings tilted to the other side, one in a boat conformation and the other with the central methylene group disordered, the components forming boat {s.o.f. 0.70(1) and 0.74(1) for the two cations} and chair conformation chelate rings. The counter-ions have tetrahedrally coordinated zinc(II) ions, one as [ZnCl2(NCS)2]2− ions and the other with one ligand site with disordered Cl {s.o.f. 0.78(1)} and NCS ligands, i.e. with disordered [ZnCl2(NCS)2]2− and [ZnCl(NCS)3]2− ions, with an overall composition of [Ni(trans-Me6[16]diene)][ZnCl1.9(NCS)2.1].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号