首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The title molecule, 2‐(4‐chlorophenyl)‐1‐methyl‐1H‐benzo[d]imidazole (C14H11ClN2), was prepared and characterized by 1H NMR, 13C NMR, IR, and single‐crystal X‐ray diffraction. The molecular geometry, vibrational frequencies, and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the title compound in the ground state have been calculated by using the Hartree‐Fock (HF) and density functional theory (DFT/B3LYP) method with 6‐31G(d) basis sets, and compared with the experimental data. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies and GIAO 1H and 13C NMR chemical shifts show good agreement with experimental values. The energetic behavior of the title compound in solvent media has been examined using B3LYP method with the 6‐31G(d) basis set by applying the Onsager and the polarizable continuum model (PCM). Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis, and nonlinear optical (NLO) properties of the title compound were investigated by theoretical calculations. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

2.
The title molecular salt, 4-(2-hydroxyphenyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridin-5-ium chloride hydrate (C12H14N3O+·Clˉ·H2O), was synthesized and characterized by IR-NMR spectroscopy and single-crystal X-ray diffraction. In addition to the molecular geometry from X-ray experiment, the molecular geometry, vibrational frequencies and gauge-independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the title compound in the ground state have been calculated using the density functional theory (DFT/B3LYP) method with the 6-31++G(d,p) and 6-311++G(d,p) basis sets, and compared with the experimental data. Besides, molecular electrostatic potential (MEP) distribution and non-linear optical properties of the title compound were investigated by theoretical calculations at the B3LYP/6-311++G(d,p) level.  相似文献   

3.
The molecular geometry, vibrational frequencies, and gauge including atomic orbital (GIAO) 1H‐ and 13C NMR chemical shift values of the title compound in the ground state have been calculated using the Hartree‐Fock (HF) and density functional theory (DFT) methods with 6‐31G(d) basis sets, and compared with the experimental data. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters and the theoretical vibrational frequencies, and 1H‐ and 13C NMR chemical shift values show good agreement with experimental data. To determine conformational flexibility, the molecular energy profile of the title compound was obtained by semiempirical (AM1) calculations with respect to the selected torsion angle, which was varied from ?180° to +180° in steps of 10°. The energetic behavior of the title compound in solvent media was examined using the B3LYP method with the 6‐31G(d) basis set by applying the Onsager and the polarizable continuum model (PCM). The results obtained with these methods reveal that the PCM method provided more stable structure than Qnsager's method. By using TD‐DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD‐DFT method and the experimental one is determined. The predicted nonlinear optical properties of the title compound are much greater than ones of urea. In addition, the molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis, NBO analysis and thermodynamic properties of the title compound were investigated using theoretical calculations. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

4.
The title molecule, N‐[4‐(3‐Methyl‐3‐phenyl‐cyclobutyl)‐thiazol‐2‐yl]‐N′‐pyridin‐3ylmethylene‐ hydrazine (C20 H20 N4 S1), was characterized by 1H‐NMR, 13C‐NMR, IR, UV‐visible, and X‐ray determination. In addition to the molecular geometry from X‐ray experiment, the molecular geometry, vibrational frequencies and gauge including atomic orbital 1H‐ and 13C‐NMR chemical shift values of the title compound in the ground state have been calculated using the Hartree‐Fock and density functional method (B3LYP) with 6‐31G(d, p) basis set. The calculated results show that optimized geometries can well reproduce the crystal structural parameters. By using time‐dependent density functional theory method, electronic absorption spectrum of the title compound has been predicted. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
The title compound 2-{[3-Methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-hydrazonomethyl}-phenol (C21H21N3S1O1) crystallizes in the P-1 triclinic space group with a = 5.8880(4) ?, b = 9.5618(5) ?, c = 17.0484(10) ?, α = 80.214(5)°, β = 80.532(5)°, γ = 80.116(5)°. In addition to molecular geometry and packing from X-ray experiment, we have also calculated the molecular geometry and vibrational frequencies of the title compound in the ground state using density functional theory DFT (B3LYP) with the 6–31G(d,p) basis set. Apart from this, the structure of the title compound is characterized by 1H NMR, 13C NMR, IR and UV-vis. Spectra, and the experimental emission energies are compared with the HOMO-LUMO energy gaps calculated by the DFT method.  相似文献   

6.
The present work contributes to a combined theoretical and experimental investigation on oxyclozanide. The experimental vibrational spectra were characterized by Fourier transform infrared (4000-400 cm?1), Fourier transform Raman (4000-400 cm?1), 1H and 13C NMR were recorded in Deuterated methanol, UV–Vis (200–400 nm) techniques and theoretical optimized molecular geometry, harmonic vibrational spectra, magnetic spectra, and electronic spectra was calculated by Density Functional Theory (DFT) employed with B3LYP/6-311++G(d,p) basis set and compared with experimental data. The highest occupied molecular orbital - lowest unoccupied molecular orbital (HOMO-LUMO) energy was also calculated for the titled compound. The intermolecular interactions have been addressed through Hirshfeld surface analysis. In addition, Natural bond orbital (NBO) analyses of the title compound were performed to evaluate the suitable reactivity site and chemical stabilization behavior, Mulliken atomic charge distribution, and molecular electrostatic potential energy surfaces, were calculated to get a better insight into the structure of oxyclozanide. The experimental and theoretical findings suggest an excellent correlation to confirm the structure of oxyclozanide.  相似文献   

7.
The title compound of phenyl-thiocarbamic acid-O-pyridin-4-ylmethyl ester has been synthesized and characterized by elemental analysis, IR, electronic spectroscopy and X-ray single crystal diffraction. Density functional theory (DFT) method calculations of the structure, atomic charge distributions and the thermodynamic properties at different temperatures have been performed. Calculated results show that DFT method at B3LYP/6-311G** level can well reproduce the structure of the title compound. The predicted vibrational frequencies are compared with the experimental ones and they support each other on the whole. The atoms of sulfur, oxygen and the atom of nitrogen from pyridine ring all have bigger negative charges, which make the title compound become a multidentate organic ligand. The correlation equations of the thermodynamic properties of and with temperature are also obtained.  相似文献   

8.
The structure of the synthesized title compound is characterized by IR, UV-visible spectroscopy, and single crystal X-ray diffraction (XRD). The new compound (C18H23NS) crystalizes in the monoclinic P21/c space group. In addition to the crystal structure from the X-ray experiment, the molecular geometry, vibrational frequencies, atomic charge distribution, and frontier molecular orbital (FMO) analysis of the title compound in the ground state are calculated by density functional teory (B3LYP) with 6-311G(d,p) and 6-31G(d,p) basis sets. The results of the optimized molecular structure are presented and compared with the experimental values. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the observed experimental bands. To determine the conformational flexibility, the molecular energy profile of (1) is obtained by semi-empirical (AM1) and (PM3) calculations with respect to a selected degree of torsional freedom. Moreover, molecular electrostatic potential (MEP) and thermodynamic parameters of the title compound were calculated by the theoretical methods.  相似文献   

9.
The intended chalcone, (E)-1-(4-aminophenyl)-3-(4-ethoxyphenyl)-prop-2-en-1-one (4A3EP), was synthesized in an alkaline medium by the Claisen–Schmidt condensation reaction of 4-aminoacetophenone with 4-ethoxybenzaldehyde. Spectroscopic analytical techniques such as UV–visible, FT-IR, FT-RAMAN, 1H NMR, and 13C NMR investigations were used to analyze the molecular structure of the title molecule. The optimized molecular structure of the chalcone in gas phase vibrational frequencies and associated vibrational assignments were theoretically studied and compared with experimental results using the B3LYP/6–311++G techniques. All the experimental results were found to be in line with the theoretical values. The non linear optical activity of the title compound was proved from the hyperpolarizability calculations. In addition, EHOMO (?5.9038 eV), ELUMO (?2.2833 eV), energy gap (3.6205 eV) and electrophilicity index (4.628) were calculated to explore the reactivity, stability and bio activity of the title compound. The molecular electrostatic potential map was generated in order to spot the electrophilic and nucleophilic sites in the title compound. Natural bond orbital analysis was investigated in order to forecast the stability and charge transfer tendency of a title molecule. FUKUI FUNCTIONS were also calculated using DFT. Its anti-inflammatory, anti-diabetic, and anti-oxidant activities were also investigated. A molecular docking model was used to study the ligand-protein binding interactions of a synthetic chalcone derivative with the main protease of SARS-CoV-2 (the PDB code is 6yb7).  相似文献   

10.
The title compound, N′‐benzylidene‐N‐[4‐(3‐methyl‐3‐phenyl‐cyclobutyl)‐thiazol‐2‐yl]‐chloro‐acetic acid hydrazide, has been synthesized and characterized by elemental analysis, IR, 1H and 13C NMR, and X‐ray single crystal diffraction. The compound crystallizes in the orthorhombic space group P 21 21 21 with a = 5.8671 (3) Å, b = 17.7182 (9) Å, and c = 20.6373 (8) Å. Moreover, the molecular geometry from X‐ray experiment, the molecular geometry, vibrational frequencies, and gauge‐including atomic orbital 1H and 13C chemical shift values of the title compound in the ground state have been calculated by using the Hartree–Fock and density functional methods (B3LYP) with 6‐31G(d) and 6‐31G(d,p) basis sets. The results of the optimized molecular structure are exhibited and compared with the experimental X‐ray diffraction. Besides, molecular electrostatic potential, Frontier molecular orbitals, and thermodynamic properties of the title compound were determined at B3LYP/6‐31G(d) levels of theory. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

11.
The FT-IR and FT-Raman spectra of 1-bromo-3-fluorobenzene (C6H4FBr) molecule have been recorded using Bruker IFS 66 V spectrometer in the range of 4000–100 cm−1. The molecular geometry and vibrational frequencies in the ground state are calculated using the DFT (B3LYP, B3PW91 and MPW91PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets. The computed values of frequencies are scaled using a suitable scale factor to yield good coherence with the observed values. The isotropic DFT (B3LYP, B3PW91 and MPW1PW91) analysis showed good agreement with the experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by B3LYP methods. The complete data of this molecule provide the information for future development of substituted benzene. The influence of bromine and fluorine atom on the geometry of benzene and its normal modes of vibrations has also been discussed. A study on the electronic properties, such as absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, was performed by time dependent DFT (TD-DFT) approach. The electronic structure and the assignment of the absorption bands in the electronic spectra of steady compounds were discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. On the basis of the thermodynamic properties of the title compound at different temperatures have been calculated in gas phase, revealing the correlations between standard heat capacities (C) standard entropies (S), standard enthalpy changes (H) and temperatures.  相似文献   

12.
Molecular structure and vibrational frequencies of 1-3-dibromo-5-chlorobenzene (DBCB) have been investigated by density functional theory (DFT) calculations using Becke's three-parameter exchange functional combined with Lee–Yang–Parr correlation (B3LYP) and standard basis set 6-31G. DFT (B3LYP/6-31G) calculations have been performed giving energies, optimized structure, harmonic vibrational frequencies, IR intensities, and Raman activities. Raman and IR spectra of the DBCB were recorded and complete assignment of the observed vibrational bands of DBCB has been proposed. The predicted first-hyperpolarizability of DBCB is 1.221 × 10−30 esu, which suggests that the title compound is an attractive object for future studies of non-linear optical properties. The impact of di-substituted halogens on the compound has also been discussed. Besides, molecular electrostatic potential (MEP), HOMO–LUMO analysis and NBO analysis were performed at DFT level of theory The UV–vis spectral analysis of DBCB has also been done which confirms the charge transfer of the title compound.  相似文献   

13.
Mononuclear Ni(II) complex (C30H30NiN4O8S2) (I) has been obtained with 1: 2 metal/ligand ratio and characterized by single crystal X-ray diffraction (CIF file CCDC no. 1040830), IR, UV-Vis spectroscopic techniques and DFT. X-ray results show that complex I crystallizes in the monoclinic system, space group P21/n with four molecules in the unit cell. In structure I, the coordination around Ni atom is distorted square planar. In addition to the crystal structure, the molecular geometry, vibrational frequencies, molecular electrostatic potential, and frontier molecular orbital analysis of compound I in the ground state have been calculated using the B3LYP/6-311G and B3LYP/3-21G methods. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the observed experimental bands.  相似文献   

14.
This work presents the synthesis and characterization of a novel compound, 3-(4-Methoxy-phenyl)-2-(4-nitro-phenyl)-acrylonitrile (abbreviated as 3-(4MP)-2-(4-NP)-AN, C16H12N2O3). The spectroscopic properties of the compound were examined by FT-IR, UV–vis and NMR (1H and 13C) techniques. FT-IR spectrum in solid state was observed in the region 4000–400 cm−1. The UV–vis absorption spectrum of the compound which dissolved in chloroform was recorded in the range of 200–800 nm. The 1H and 13C NMR spectra were recorded in CDCl3 solution. To determine lowest-energy molecular conformation of the title molecule, the selected torsion angle is varied every 10° and molecular energy profile is calculated from 0° to 360°. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP/6-31G(d,p) basis set. The dipole moment, linear polarizability and first hyperpolarizability values were also computed using the same basis set. A study on the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The HOMO and LUMO analysis were used to elucidate information regarding charge transfer within the molecule. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR spectrum. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. Comparison of the calculated frequencies, NMR chemical shifts, absorption wavelengths with the experimental values revealed that DFT and TD-DFT method produce good results. The linear polarizabilities and first hyperpolarizabilities of the studied molecule indicate that the title compound can be used as a good nonlinear optical material. The thermodynamic properties of the studied compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures.  相似文献   

15.
The titled molecule 4-[3-(2,5-dimethylphenyl)-3-methylcyclobutyl]-N-methylthiazol-2-amine (C17H22N2S) is synthesized and characterized by 1H NMR, 13C NMR, IR, and X-ray single crystal determination. The compound crystallizes in the monoclinic space group P21/c with a = 6.3972(4) Å, b = 9.4988(6) Å, c = 26.016(2) Å and β = 93.496(7)°. In addition to the molecular geometry from the X-ray determination, vibrational frequencies and gauge, including the atomic orbital (GIAO), 1H and 13C NMR chemical shift values of the titled compound in the ground state are calculated using the density functional (B3LYP) method with 6-31G(d), 6-31++G(d,p) and 6-311+G(2d,p) basis sets. The calculated results show that the optimized geometries can well reproduce the crystal structure. Moreover, the theoretical vibrational frequencies and chemical shift values show good agreement with the experimental values. The predicted nonlinear optical properties of the titled compound are greater than those of urea. DFT calculations of the molecular electrostatic potentials and frontier molecular orbitals of the titled compound are carried out at the B3LYP/6-31G(d) level of theory.  相似文献   

16.
The molecular geometry, the normal mode frequencies and corresponding vibrational assignment of melaminium phthalate (C3H7N6+·C8H5O4) in the ground state were performed by HF and B3LYP levels of theory using the 6-31G(d) basis set. The optimized bond length numbers with bond angles are in good agreement with the X-ray data. The vibrational spectra of melaminium phthalate which is calculated by HF and B3LYP methods, reproduces vibrational wave numbers with an accuracy which allows reliable vibrational assignments. The title compound has been studied in the 4000–100 cm−1 region where the theoretical evaluation and assignment of all observed bands were made.  相似文献   

17.
A novel benzimidazole derivative, 1,3-dimethyl-2-ferrocenylmethylbenzimidazolium iodide (1) was synthesized and characterized by elemental analysis, MS, IH NMR and IR spectra. Its crystal structure was determined by X-ray single crystal diffraction, and the title compound belongs to monoclinic system with space group P2(1)/c. According to the crystal structure, the quantum chemistry calculation was performed by Gaussian 03 program, and full geometry optimizations of the title compound were carried out with DFT method at B3LYP/6-31G level. Its structure, stability, frontier molecular orbital components and net charge distribution were discussed.  相似文献   

18.
The title molecule, 3‐{[4‐(3‐methyl‐3‐phenyl‐cyclobutyl)‐thiazol‐2‐yl]‐hydrazono}‐1,3‐dihydro‐indol‐2‐one (C22H20N4O1S1), was prepared and characterized by 1H NMR, 13C NMR, IR, UV–visible, and single‐crystal X‐ray diffraction. The compound crystallizes in the monoclinic space group P21 with a = 8.3401(5), b = 5.6976(3), c = 20.8155(14) Å, and β = 95.144(5)°. Molecular geometry from X‐ray experiment and vibrational frequencies of the title compound in the ground state has been calculated using the Hartree–Fock with 6‐31G(d, p) and density functional method (B3LYP) with 6‐31G(d, p) and 6‐311G(d, p) basis sets, and compared with the experimental data. The calculated results show that optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies values show good agreement with experimental data. Density functional theory calculations of the title compound and thermodynamic properties were performed at B3LYP/6‐31G(d, p) level of theory. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

19.
The optimized molecular geometry, vibrational frequencies, and gauge including atomic orbital (GIAO) (1)H and (13)C NMR shift values of 5-(4-bromophenylamino)-2-methylsulfanylmethyl-2H-1,2,3-triazol-4-carboxylic acid ethyl ester have been calculated by using Hartree-Fock (HF) and density functional method (DFT/B3LYP) with 6-31G(d), 6-31G(d,p) and LANL2DZ basis sets. The optimized molecular geometric parameters were presented and compared with the data obtained from X-ray diffraction. In order to fit the calculated harmonic wavenumbers to the experimentally observed ones, scaled quantum mechanics force field (SQM FF) methodology was proceeded. Correlation factors between the experimental and calculated (1)H chemical shift values of the title compound in vacuum and in CHCl(3) solution by using the conductor-like screening continuum solvation model (COSMO) were reported. The calculated results showed that the optimized geometry well reproduces the crystal structure. The theoretical vibrational frequencies and chemical shifts are in very good agreement with the experimental data. In solvent media the energetic behavior of the title compound was also examined by using the B3LYP method with the 6-31G(d) basis set, applying the COSMO model. The obtained results indicated that the total energy of the title compound decreases with increasing polarity of the solvent. Furthermore, molecular electrostatic potential (MEP), natural bond orbital (NBO) and frontier molecular orbitals (FMOs) of the title compound were performed by the B3LYP/LANL2DZ method, and also thermodynamic parameters for the title compound were calculated at all the HF and B3LYP levels.  相似文献   

20.
This work presents the synthesis and characterization of a novel compound, 4-(thiophene-3-ylmethoxy)phthalonitrile (TMP). The spectroscopic properties of the compound were examined by FT-IR, FT-Raman, NMR, and UV techniques. FT-IR and FT-Raman spectra in solid state were observed in the region 4000–400 cm−1 and 3500–50 cm−1, respectively. The 1H and 13C NMR spectra were recorded in CDCl3 solution. The UV absorption spectrum of the compound that dissolved in THF was recorded in the range of 200–800 nm. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts (13C NMR and 1H NMR) were calculated using the gauge-invariant atomic orbital (GIAO) method. A study on the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The HOMO and LUMO analyses have been used to elucidate information regarding charge transfer within the molecule. Comparison of the calculated frequencies, NMR chemical shifts, absorption wavelengths with the experimental values revealed that DFT method produces good results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号