共查询到20条相似文献,搜索用时 15 毫秒
1.
The [Ru(SCN)2(PPh3)2(L)2] complexes, where L = HPz, PhIm, HTz, have been prepared and studied by IR, NMR, UV–vis spectroscopy and X-ray crystallography. The complexes were prepared in the reactions of [RuCl2(PPh3)3] with pyrazole, benzimidazole and triazole in methanol solutions. The electronic structures of the obtained compounds have been calculated using the TD–DFT method. 相似文献
2.
[RuH(CO)(dpa)(PPh3)2]X and [RuHX(CO)(pyCHPh)(PPh3)2] (X = Cl, NCS) complexes (where dpa = 2,2′-dipyridylamine, pyCHPh = 4-(3-phenylpropyl)pyridine) have been prepared and studied using IR, NMR, UV-Vis spectroscopies and X-ray crystallography. The electronic structures and bonding of the obtained complexes were defined on the basis of the DFT method. The electronic spectra of the complexes were calculated and associated with the structure of the molecular orbitals of the complexes. The luminescence properties of the complexes were determined. 相似文献
3.
J.G. Ma?ecki 《Polyhedron》2012,31(1):159-166
[RuCl2(HBO)(PPh3)2] and [RuCl(CO)(HBO)(PPh3)2] complexes with the 2-(2-hydroxyphenyl)benzoxazole (C13H9NO2) ligand were synthesized and characterized by infra red, proton and phosphorus nuclear magnetic resonances, electronic absorption and emission spectroscopies and X-ray crystallography. The experimental studies were completed by theoretical calculations. The calculations show that the donor properties of the carbonyl group predominates the π-acceptor ability in the ruthenium(II) complex. The small transfer of electron density to the acceptor π∗ carbonyl orbitals is compensated by the presence of the chloride acceptor ligand. The electronic structures of these complexes, presented in particular by density of states diagrams, have been correlated with their ability to fluorescence and have been used to analyze the UV-Vis spectra. 相似文献
4.
J.G. Ma?ecki 《Polyhedron》2011,30(1):79-85
[RuHCl(CO)(PPh3)2(py)], [RuHCl(CO)(PPh3)2(pyIm)] and [RuCl(CO)(PPh3)2(pyoh)]·2CH3OH complexes (where py = pyridine, pyIm = imidazo[1,2-α]pyridine, pyoh = 2-hydroxy-6-methylpyridine) have been prepared and studied by IR, NMR, UV-Vis spectroscopy and X-ray crystallography. Electronic structures and bonding of the complexes were defined on the basis of DFT method, and the pyridine derivative ligands were compared on the basis of their donor-acceptor properties. Values of the ligand field parameter 10Dq and Racah’s parameters were estimated for the studied compounds, and the luminescence properties were determined. 相似文献
5.
The [(C6H6)RuCl(HPB)] and [(C6H6)RuCl2(C5H4NCOOH)] complexes have been prepared and studied by IR, UV-Vis spectroscopy and X-ray crystallography. The complexes was prepared in reaction of [(C6H6)RuCl2]2 with 2-(2′-hydroxyphenyl)-benzoxazole or 4-picolinic acid in methanol. The electronic spectra of the obtained compounds have been calculated using the TDDFT method. The luminescence property of the half sandwich complex [(C6H6)RuCl(HPB)] was studied by the DFT method and the mechanism was suggested. 相似文献
6.
7.
8.
Khenglawt Pachhunga Bruno Therrien Kevin A. Kreisel Glenn P.A. Yap Mohan Rao Kollipara 《Polyhedron》2007
The reaction of [CpRu(PPh3)2Cl] and [CpOs(PPh3)2Br] with chelating 2-(2′-pyridyl)imidazole (N ∩ N) ligands and NH4PF6 yields cationic complexes of the type [CpM(N ∩ N)(PPh3)]+ (1: M = Ru, N ∩ N = 2-(2′-pyridyl)imidazole; 2: M = Ru, N ∩ N = 2-(2′-pyridyl)benzimidazole; 3: M = Ru, N ∩ N = 2-(2′-pyridyl)-4,5-dimethylimidazole; 4: M = Ru, N ∩ N = 2-(2′-pyridyl)-4,5-diphenylimidazole; 5: M = Os, N ∩ N = 2-(2′-pyridyl)imidazole; 6: M = Os, N ∩ N = 2-(2′-pyridyl)benzimidazole). They have been isolated and characterized as their hexafluorophosphate salts. Similarly, in the presence of NH4PF6, [Cp∗Ir(μ-Cl)Cl]2 reacts in dry methanol with N ∩ N chelating ligands to afford in excellent yield [Cp∗Ir(N ∩ N)Cl]PF6 (7: N ∩ N = 2-(2′-pyridyl)imidazole; 8: N ∩ N = 2-(2′-pyridyl)benzimidazole). All the compounds have been characterized by infrared and NMR spectroscopy and the molecular structure of [1]PF6, [2]PF6 and [7]PF6 by single-crystal X-ray structure analysis. 相似文献
9.
The reaction of [RuHCl(CO)(PPh3)3] with 8-hydroxyquinoline has been examined and a novel ruthenium(II) complex – [RuCl(CO)(PPh3)2(C9H6NO)] – has been obtained. This compound has been studied by IR, UV–Vis (absorption and emission), 1H and 31P NMR spectroscopy, and X-ray crystallography. The molecular orbital diagram of the complex has been calculated with the density functional theory (DFT) method. The spin-allowed singlet–singlet electronic transitions of the complex have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of the compound has been discussed on this basis. 相似文献
10.
《Journal of Coordination Chemistry》2012,65(9):1561-1573
Two palladium(II) complexes with imidazole derivative ligands have been synthesized. The molecular structures of the complexes were determined by X-ray crystallography and their spectroscopic properties were studied. Based on the crystal structures, computational investigations were carried out to determine the electronic structures of the complexes. The electronic spectra were calculated with use of time-dependent DFT method, and the transitions were correlated with the molecular orbitals of the complexes. The emission of the complex with 1-methylimidazole was examined. 相似文献
11.
《Journal of Coordination Chemistry》2012,65(8):1289-1302
The reaction of cis-[RuCl2(dmso)4] with [6-(2-pyridinyl)-5,6-dihydrobenzimidazo[1,2-c]quinazoline] (L) afforded in pure form a blue ruthenium(II) complex, [Ru(L1)2] (1), where the original L changed to [2-(1H-benzoimidazol-2-yl)-phenyl]-pyridin-2-ylmethylene-amine (HL1 ). Treatment of RuCl3?·?3H2O with L in dry tetrahydrofuran in inert atmosphere led to a green ruthenium(II) complex, trans-[RuCl2(L2)2] (2), where L was oxidized in situ to the neutral species 6-pyridin-yl-benzo[4,5]imidazo[1,2-c]quinazoline (L2 ). Complex 2 was also obtained from the reaction of RuCl3?·?3H2O with L2 in dry ethanol. Complexes 1 and 2 have been characterized by physico-chemical and spectroscopic tools, and 1 has been structurally characterized by single-crystal X-ray crystallography. The electrochemical behavior of the complexes shows the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of these complexes with calf thymus DNA by using absorption and emission spectral studies allowed determination of the binding constant K b and the linear Stern–Volmer quenching constant K SV. 相似文献
12.
The reaction of copper(II) nitrate trihydrate and 2-(2-pyridyl)benzimidazole (pybzim) leads to [Cu(pybzim)2(NO3)](NO3). The compound has been studied by IR, UV–Vis spectroscopy and X-ray crystallography. The electronic structure of the [Cu(pybzim)2(NO3)]+ cation has been calculated with the density functional theory (DFT) method. The spin-allowed doublet–doublet electronic transitions of [Cu(pybzim)2(NO3)]+ have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of the title compound has been discussed on this basis. 相似文献
13.
Chang-Bin Yu Xiao-Hong Tian Guang-Ying Fan Xian-Jun Li Kim-Chung Tin 《Journal of organometallic chemistry》2006,691(3):499-506
Treatment of [RuCl2(η6-C6H6)]x with bidentate phosphine ligand BDNA [1,8-bis(diphenylphosphinomethyl)naphthalene] in methanol at room temperature gave η6-benzene-ruthenium complexes Ru2Cl4(η6-C6H6)2(μ-BDNA) (1). Complex 1 further reacted with AgBF4 to form complex [Ru2Cl2(μ-Cl)(η6-C6H6)2(μ-BDNA)](BF4) (2). [RuCl2(η6-C6H6)]x reacted with BDNA in refluxing methanol and then the reaction solution was treated with AgBF4 to generate complex [Ru2Cl2(η6-C6H6)2(μ-BDNA)2](BF4)2 (3). Their compositions and structures had been determined by elemental analyses, NMR spectra and single crystal X-ray diffractions. X-ray diffraction showed that complex 1 belonged to monoclinic crystal system, P21/c space group with Z = 4, a = 12.810 Å, b = 21.507 Å, c = 18.471 Å, β = 107.95°; complex 2 belonged monoclinic crystal system, P21/n space group with Z = 4, a = 14.498 Å, b = 15.644 Å, c = 20.788 Å, β = 103.404°, and complex 3 belonged to monoclinic crystal system, P21/n space group with Z = 2, a = 13.732 Å, b = 14.351 Å, c = 19.733 Å, β = 94.82°. 相似文献
14.
J.G. Małecki 《Polyhedron》2010,29(8):1973-1979
The complexes [Ru(SCN)2(PPh3)2(L)2], where L = py and γ-pic, and [Ru(SCN)2(PPh3)2(L)], where L = py-2-CH2NH2 and py-2-CH2O, have been prepared and studied by IR, NMR, EPR, UV–Vis spectroscopy and X-ray crystallography. The complexes were prepared in the reactions of [RuCl2(PPh3)3] with pyridine, γ-picoline, 2-(aminomethyl)pyridine and 2-(hydroxymethyl)pyridine in methanol solutions. The electronic structures of the obtained compounds have been calculated using the DFT/TD-DFT method. 相似文献
15.
16.
《Journal of Coordination Chemistry》2012,65(14):2186-2196
The reaction of [RuHCl(CO)(PPh3)3] with pyrimidine gives [RuHCl(CO)(PPh3)2(C4H4N2)]. The compound has been studied by IR, UV-Vis and X-ray crystallography. The molecular orbital diagram of the complex has been calculated with density functional theory (DFT). The spin-allowed singlet-singlet electronic transitions of the complex have been calculated with time-dependent DFT method, and the UV-Vis spectrum of the compound has been discussed on this basis. Emission of the compound was studied. 相似文献
17.
Two novel tricarbonyl rhenium complexes based on the bidentate heterocyclic N–N ligands [bis(pyrazol-1-yl)methane(bpzm) and bis(3,5-dimethylpyrazol-1-yl)methane(bdmpzm)] have been synthesized by heating at reflux [Re(CO)5Cl] with the appropriate N–N ligand in toluene. The compounds have been characterized by IR and UV–Vis spectroscopy and X-ray analysis. Density functional theory (DFT) and time-dependent (TD) DFT calculations have been carried out for the [Re(CO)3(bdmpzm)Cl] complex. 相似文献
18.
The [(PPh3)2RuHCl(CO)(Hmtpo)] complex has been prepared and studied by IR, NMR, UV–VIS spectroscopy and X-ray crystallography. The complex was prepared in reactions of [RuHCl(CO)(PPh3)3] with 7-hydroxy-5-methyl[1,2,4]triazolo[1,5-a]pyrimidine in methanol. The electronic structure and UV–Vis spectrum of the obtained compound have been calculated using the TD–DFT method. 相似文献
19.
The new (E)-8-hydroxyquinoline-2-carbaldehyde O-benzyl oxime ligand and its hydride-carbonyl complex of ruthenium was synthesized and characterized by infrared, proton and phosphorus nuclear magnetic resonance, electronic absorption and emission spectroscopy and X-ray crystallography. The experimental studies were complemented by theoretical calculations. From the electronic spectrum of the complex the Racah’s and nepheloauxetic parameters are calculated. The electronic structure of the complexes, presented in particular by the density of states diagram, have been correlated with its ability to fluoresce and used to analyze the UV-Vis spectra. 相似文献
20.
Joy Chakraborty Santarupa Thakurta Brajagopal Samanta Aurkie Ray G. Pilet Stuart R. Batten Paul Jensen Samiran Mitra 《Polyhedron》2007
Three novel Schiff base Cd(II) trimeric complexes, [Cd3(L1)2(SCN)2(CF3COO)2] (1), [Cd3(L1)2(SCN)2(HCONMe2)] (2) and [Cd3(L2)2{N(CN)2}2] (3) have been prepared from two different symmetrical Schiff bases H2L1 and H2L2 (where H2L1 = N1,N3-bis(salicylideneimino)diethylenetriamine, a potentially pentadentate Schiff base with a N3O2 donor set, and H2L2 = N1,N3-bis(3-methoxysalicylideneimino)diethylenetriamine, a potentially heptadentate Schiff base with a N3O4 donor set). All the complexes have been synthesised under similar synthetic procedures and their crystal structures have been established by single crystal X-ray diffraction methods. The ligands and their metal complexes have been characterised by analytical and spectroscopic techniques. Among the three complexes, 1 and 3 are linear whereas 2 is a cyclic trimer. In 1 and 3, all the doubly phenoxo bridged Cd(II) metal centres are in a distorted octahedral environment. In complex 2, two of the three Cd(II) centres reside in a distorted octahedral environment and the remaining one enjoys a monocapped octahedral geometry. Altogether the variety in the bridging mode of two new salen-type ligands has been established through these complexes. 相似文献