首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
N‐Heterocyclic carbene‐phosphinidene adducts of the type (IDipp)PR [R = Ph ( 5 ), SiMe3 ( 6 ); IDipp = 1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene] were used as ligands for the preparation of rhodium(I) and iridium(I) complexes. Treatment of (IDipp)PPh ( 5 ) with the dimeric complexes [M(μ‐Cl)(COD)]2 (M = Rh, Ir; COD = 1,5‐cyclcooctadiene) afforded the corresponding metal(I) complexes [M(COD)Cl{(IDipp)PPh}] [M = Rh ( 7 ) or Ir ( 8 )] in moderate to good yields. The reaction of (IDipp)PSiMe3 ( 6 ) with [Ir(μ‐Cl)(COD)]2 did not yield trimethylsilyl chloride elimination product, but furnished the 1:1 complex, [Ir(COD)Cl{(IDipp)PSiMe3}] ( 9 ). Additionally, the rhodium‐COD complex 7 was converted into the corresponding rhodium‐carbonyl complex [Rh(CO)2Cl{(IDipp)PPh}] ( 10 ) by reaction with an excess of carbon monoxide gas. All complexes were fully characterized by NMR spectroscopy, microanalyses, and single‐crystal X‐ray diffraction studies.  相似文献   

2.
New chiral and non-chiral rhodium(I)–NHC complexes were synthesized. The first attempt by deprotonation of an imidazolinium salt with KOtBu and reaction with [Rh(COD)Cl]2 leads to the corresponding rhodium(I) complex. Due to the basic conditions during the reaction a loss of chirality occurs. An alternative transmetallation reaction with a silver(I)–NHC complex yields the desired rhodium(I)–NHC complex under retention of chirality. Both Rh complexes were fully characterized by analytical methods.  相似文献   

3.
The preparation of cationic indazole (HIdz) rhodium(I) complexes of the types [(diolefin)Rh(HIdz)2]ClO4 and [(CO)2Rh(HIdz)2]ClO4 is described. Neutral binuclear rhodium(I) complexes of the type [Y2Rh(μ-Idz)]2 (Y2  COD, TFB, NBD, (CO)2 or (CO)(PPh3)) are obtained by treating the corresponding complexes [Y2RhCl]2 with indazole and organic or inorganic bases. The cationic mononuclear derivatives react with the solvated species [Y2Rh(acetone)x]ClO4 in the presence of triethylamine to give neutral binuclear complexes of the types [(CO)2Rh(μ-Idz)2Rh(diolefin)], [(Ph3P)(CO)Rh(μ-Idz)2Rh(diolefin)] and [(diolefin)Rh(μ-Idz)Rh(diolefin′)] (diolefin  COD, TFB or NBD; diolefin′  COD or TFB). Alternative methods for the synthesis of the binuclear complexes are also described.  相似文献   

4.
A series of chelating bridge functionalized bis-N-heterocyclic carbenes (NHC) complexes of rhodium (I) were prepared by reacting the corresponding imidazolium salts with [Rh(COD)Cl]2 in an in-situ reaction. For the N-methyl substituted complex with a PF6-anion an X-ray crystal structure was exemplary obtained. All complexes were spectroscopically characterized and tested for the hydrosilylation of acetophenone.  相似文献   

5.
Cationic rhodium(I) complexes of the general formula [Rh(COD)L2]ClO4 (L2 = bipyO2, phenO, dpeO2 and dpmO2) are prepared from the solvated species [Rh(COD)(Me2CO)x]+ and the appropriate ligand. Complexes of the type [Rhn(COD)n](ClO4)n (CNPyO = 4-cyano and 2-cyanopyridine N-oxide) are obtained similarly. Reaction of [RhCl(COD)]2 with the potassium salt of 2-picolinic acid N-oxide leads to the neutral complex Rh(COOPyO)(COD). The mononuclear rhodium diolefinic compounds react with carbon monoxide to give complexes of the type [Rh(CO)2L2]ClO4 and Rh(COOPyO)(CO)2, which on treatment with triphenylphosphine yield monocarbonyl derivatives.The catalytic activities of the diolefin complexes and related derivatives in hydrogen-transfer catalytic reactions have been studied.  相似文献   

6.
Summary In this work, a mechanistic study of the hydroxycarbonylation of 1-hexene to heptanoic acid and the water gas shift reaction (WGSR) catalyzed by the rhodium(I) complexes, [Rh(COD)(amine)2](PF6) (COD = 1,5-cyclooctadiene, amine = 4-picoline, 3-picoline, 2-picoline, pyridine, 3,5-lutidine or 2,6-lutidine) immobilized on poly(4-vinylpyridine) in contact with water under CO is discussed. Catalytic cycles for these reactions bearing common Rh-H catalytic species are proposed.  相似文献   

7.
Dinuclear rhodium complexes of the type [Rh2(C2O4)(diolefin)2] (diolefin)2  1,5-cyclooctadiene, 2,5-norbornadiene and tetrafluorobenzobarrelene) with bridging oxalate ligands have been obtained by reaction of [Rh(acac)(diolefin)] with oxalic acid (2: 1 mol ratio). The use of a 1 : 1 molar ratio affords [Rh(HC2O4)(COD)], that reacts with [Ir(acac)(COD)] yielding the heterodinuclear [(COD)Rh(C2O4)Ir(COD)] complex. Treatment of [Rh2(C2O4)(diolefin)2] complexes with phenanthroline type ligands leads to ionic complexes of formula [Rh(diolefin) (phen)][Rh(C2O4)(diolefin)]. Bubbling of carbon monoxide through solutions of the diolefin complexes leads to the formation of carbonylrhodium species of formula [Rh2(C2O4)(CO)2L2] (L = CO, PPh3t-BuNC) or [Rh(CO)2(phen)] - [Rh(C2O4)(CO)2]. Other related malonate complexes are also described.  相似文献   

8.
Hydrogen transfer from isopropanol to various ketones such as cyclohexanone, 4-t-butylcyclohexanone and acetophenone are catalyzed by cationic rhodium(I) complexes of the type [Rh(Diene)L2]+ (Diene = 1,5-cyclooctadiene (COD) or norbornadiene (NBD); L2 or L = mono- or bi-dentate phosphine ligands). The results indicate higher activities for complexes containing chelating ligands.  相似文献   

9.
Some new Rh(I) and Ir(I) complexes of the types [(COD)M(LL)]ClO4 and [(COD)MCl]2 [COD = cyclooctadiene; M = Rh, Ir; LL = 1,1′-bis(diphenylphosphino)ferrocene (DPPF), 1-diphenylphosphino-2-(N,N-dimethylamino)methylferrocene (FcNP), 1,6-diferrocenyl-2,5-diazahexane (FcNN)] were prepared, and their catalytic activities toward polymerization of phenyl acetylene were examined. The rhodium complexes proved to be very effective catalysts to yield highly stereoregular polyphenylacetylene (cis-transoidal-PPA) in high yields under mild conditions. The number-average molecular weight (M n) of the PPA obtained is in the range of 19,000–33,000 and the weight-average molecular weight (M ω) is in the range of 47,000–95,000. Comparative studies revealed that of various catalysts employed, the cationic mononuclear [Rh(FcNN)(COD)]ClO4 complex exhibited the best results to give exclusively the cis-transoidal-PPA (cis content ∼100%) with the highest molecular weight (M n = 33,340) in the highest chemical yield (94%). Other reaction parameters such as the softness of the ligand, the solvent, the relative amount of catalyst, and the reaction temperature were also investigated to find that all these factors played crucial roles. The iridium systems worked better for the trimerization rather than polymerization to yield 1,3,5-triphenybenzene as major product. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
To develop more active catalysts for the rhodium‐catalyzed addition of carboxylic acids to terminal alkynes furnishing anti‐Markovnikov Z enol esters, a thorough study of the rhodium complexes involved was performed. A number of rhodium complexes were characterized by NMR, ESI‐MS, and X‐ray analysis and applied as catalysts for the title reaction. The systematic investigations revealed that the presence of chloride ions decreased the catalyst activity. Conversely, generating and applying a mixture of two rhodium species, namely, [Rh(DPPMP)2][H(benzoate)2] (DPPMP=diphenylphosphinomethylpyridine) and [{Rh(COD)(μ2‐benzoate)}2], provided a significantly more active catalyst. Furthermore, the addition of a catalytic amount of base (Cs2CO3) had an additional accelerating effect. This higher catalyst activity allowed the reaction time to be reduced from 16 to 1–4 h while maintaining high selectivity. Studies on the substrate scope revealed that the new catalysts have greater functional‐group compatibility.  相似文献   

11.
A new series of chiral NHC–rhodium complexes has been prepared from the reactions between [Rh(COD)Cl]2, NaOAc, KI and dibenzimidazolium salt 4a or monobenzimidazolium salts 4bd, which are derived from chiral 2,2′-diamino-6,6′-dimethyl-1,1′-biphenyl, 2,2′-diamino-1,1′-binaphthyl or 6,6′-dimethyl-2-amino-2′-hydroxy-1,1′-biphenyl. The steric and electronic effects of the ligand play an important role in the complex formation. For example, treatment of chiral monobenzimidazolium salt 4b (with a NMe2 group) with 0.5 equiv of [Rh(COD)Cl]2 in the presence of NaOAc and KI in CH3CN at reflux gives a chiral Rh(I) complex 5b, while chiral monobenzimidazolium salt 4d (with a MeO group) affords a racemic Rh(I) complex 5d. Under similar reaction conditions, treatment of dibenzimidazolium salt 4a with 0.5 equiv of [Rh(COD)Cl]2 in the presence of NaOAc and KI gives a racemic Rh(III) complex 5a, while the dibenzimidazolium salt [C20H12(C7H5N2Me)2]I2 derived from chiral 2,2′-diamino-1,1′-binaphthyl affords a chiral Rh(III) complex [C20H12(C7H4N2Me)2]RhI2(OAc). All compounds have been characterized by various spectroscopic techniques, and elemental analyses. The solid-state structures of the rhodium complexes have been further confirmed by X-ray diffraction analyses.  相似文献   

12.
The transition state for the oxidative addition reaction [Rh(acac)(P(OPh)3)2] + CH3I, as well as two simplified models viz. [Rh(acac)(P(OCH3)3)2] and [Rh(acac)(P(OH)3)2], are calculated with the density functional theory (DFT) at the PW91/TZP level of theory. The full experimental model, as well as the simplified model systems, gives a good account of the experimental Rh-ligand bond lengths of both the rhodium(I) and rhodium(III) β-diketonatobis(triphenylphosphite) complexes. The relative stability of the four possible rhodium(III) reaction products is the same for all the models, with trans-[Rh(acac)(P(OPh)3)2(CH3)(I)] (in agreement with experimental data) as the most stable reaction product. The best agreement between the theoretical and experimental activation parameters was obtained for the full experimental system.  相似文献   

13.
The oxidative addition of methyl iodide to [Rh(β-diketonato)(CO)(PPh)3] complexes, as modal catalysts of the first step during the Monsanto process, are well-studied. The β-diketonato ligand is a bidentate (BID) ligand that bonds, through two O donor atoms (O,O-BID ligand), to rhodium. Imino-β-diketones are similar to β-diketones, though the donor atoms are N and O, referred to as an N,O-BID ligand. In this study, the oxidative addition of methyl iodide to [Rh(imino-β-diketonato)(CO)(PPh)3] complexes, as observed on UV–Vis spectrophotometry, IR spectrophotometry and NMR spectrometry, are presented. Experimentally, one isomer of [Rh(CH3COCHCNPhCH3)(CO)(PPh3)] and two isomers of [Rh(CH3COCHCNHCH3)(CO)(PPh3)] are observed—in agreement with density functional theory (DFT) calculations. Experimentally the [Rh(CH3COCHCNPhCH3)(CO)(PPh3)] + CH3I reaction proceeds through one reaction step, with a rhodium(III)-alkyl as the final reaction product. However, the [Rh(CH3COCHCNHCH3)(CO)(PPh3)] + CH3I reaction proceeds through two reaction steps, with a rhodium(III)-acyl as the final reaction product. DFT calculations of all the possible reaction products and transition states agree with experimental findings. Due to the smaller electronegativity of N, compared to O, the oxidative addition reaction rate of CH3I to the two [Rh(imino-β-diketonato)(CO)(PPh)3] complexes of this study was 7–11 times faster than the oxidative addition reaction rate of CH3I to [Rh(CH3COCHCOCH3)(CO)(PPh3)].  相似文献   

14.
The isolation of simultaneously low-coordinate and low-valent compounds is a timeless challenge for preparative chemists. This work showcases the preparation and full characterization of tri-coordinate rhodium(-I) and rhodium(0) complexes as well as a rare rhodium(I) complex. Reduction of [{Rh(μ-Cl)(IPr)(dvtms)}2] ( 1 , IPr=1,3-bis(2,6-diisopropylphenyl)imidazolyl-2-ylidene; dvtms=divinyltetramethyldisiloxane) with KC8 gave the trigonal complexes K[Rh(IPr)(dvtms)] and [Rh(IPr)(dvtms)], whereas the cation [Rh(IPr)(dvtms)]+ results from their oxidation or by abstraction of chloride from 1 with silver salts. The paramagnetic Rh0 complex is a unique fully metal-centered radical with the unpaired electron in the dz2 orbital. The Rh(-I) complex reacts with PPh3 with replacement of the NHC ligand, and behaves as a nucleophile, which upon reaction with [AuCl(PPh3)] generates the trigonal pyramidal complex [(IPr)(dvtms)Rh-Au(PPh3)] with a metal–metal bond between two d10 metal centers.  相似文献   

15.
The reaction of [RhCl(COD)]2 (COD = 1,5-cyclooctadiene) with sodium N-phenylanthranilate leads to the formation of the new crystalline rhodium(I) complex [RhFA(COD)]2 (FA = N-phenylanthranilate anion). The compound is a dimer with two N-phenylanthranilate ions bridging and COD ligands terminally bonded to rhodium with an Rh … Rh distance equal to 3.424(3) Å. Strong intramolecular hydrogen bonding occurs between the hydrogen of the NH group and the closest carbonyl oxygen in the FA ligands. The crystals are monoclinic, space group P21/c, with a = 11.246(8), b = 14.999(9), c = 21.82(2) Å, β = 105.11(6)°. The structure was solved by the heavy-atom method and refined by least squares to R = 0.035 for 4260 diffractometer data.  相似文献   

16.
A study has been made of the asymmetric hydrosilylation of acetophenone by diphenylsilane under the influence of rhodium complexes with chiral phosphites. The enantioselective nature of the reaction depends on the phosphite structure, the acetophenone/rhodium and ligana/rhodium ratios, and the temperature. The maximum optical yield (24%) is attainod on the complex [Rh(COD)Cl]2/(S, S)-2-ethoxy-4,5-dicarbisopropoxy-1,3-2-dioxophiospholane.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 5, pp. 983–989, May, 1991.  相似文献   

17.
Seven chiral thiazolidines bound rhodium complexes were synthesized and their catalytic asymmetric hydrosilation properties were investigated It was found through investigation that the configuration of newly formed chiral centre C2 of substituted chiral thiazolidines prepared from L-cysteine or its esters has no effect on the final results of catalytic asymmetric hydrosilation.The direct reason for causing this phenomenon is reported by the present quantitative results for the first time:the rapid racemation of chiral center C2 of chiral thiazolidine ligands takes place under the catalysis of rhodium(Ⅰ) complex [Rh(COD)CI]2  相似文献   

18.
Novel carbonyl complexes of rhodium(I) and rhodium(III) containing the bidenate nitrogen donor ligand 2,2′-biquinoline (biq) have been prepared; they are of the types RhX(CO)2 biq and RhX(CO)biq (X = Cl, Br, I). Cationic carbonyl and substituted carbonyl complexes of the types [Rh(CO)2biq]ClO4 and [Rh(CO)biqL2]ClO4, where L is tertiary phosphine or arsine have also been isolated. In spite of considerable steric crowding around the nitrogen atoms, 2,2′-biquinoline behaves much like 2,2′-bipyridine in forming carbonyl complexes of rhodium.  相似文献   

19.
Reported here is the influence of the reaction conditions variation (1-hexene/rhodium content (S/C) = 16 - 105, temperature (T) = 70 - 110 °C and carbon monoxide pressure (P(CO)) = 0.6 - 1.8 atm) on the catalytic hydroformylation of 1-hexene to aldehydes (heptanal and 2-methyl-hexanal) by the rhodium(I) complex, [Rh(COD)(2-picoline)2]PF6 (COD = 1,5-cyclooctadiene)immobilized on poly(4-vinylpyridine) in contact with 10 mL of 80% aqueous 2-ethoxyethanol, under water gas shift reaction condition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
《Polyhedron》1987,6(6):1329-1335
The preparation and properties of cationic rhodium and iridium complexes of types [M(diolefin)L2](ClO4) and [M(diolefin)L(PPh3)](ClO4) [M = Rh, diolefin = 1,5-cyclooctadiene (COD) or 2,5-norbornadiene; M = Ir, diolefin = COD; L = phosphine sulphide] are described. The complexes have been characterized by IR, 1H NMR and 31P NMR spectroscopy. The use of [M(diolefin)L2](ClO4) as catalyst precursors in homogeneous hydrogenation of olefins has been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号