首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The [ReOX2(hbt)(EPh3)] (X = Cl, Br; E = As, P) chelates have been prepared in the reactions of [ReOX3(EPh3)2] complexes (X = Cl, Br; E = P, As) with 2-(2′-hydroxyphenyl)-2-benzothiazole (hbtH) in acetone. From the reactions of [ReOX3(PPh3)2] with hbtH two kind of crystals [ReOX2(hbt)(PPh3)] · MeCN and [ReOX2(hbt)(PPh3)] with different arrangement of halide ions (cis and trans) were isolated, whereas the [ReOX3(AsPh3)2] oxocompounds react with hbtH to give only cis-halide isomers. The complexes were structurally and spectroscopically characterised. The electronic structures of both [ReOBr2(hbt)(PPh3)] isomers have been calculated with the density functional theory (DFT) method. The TDDFT/PCM calculations have been employed to produce a hundred of singlet excited-states starting from the ground-state geometry optimized in the gas phase of cis- and trans-halide isomers of [ReOBr2(hbt)(PPh3)] and the UV–Vis spectra of these complexes have been discussed on this basis.  相似文献   

2.
[RuH(CO)(SCN)(PPh3)3] and [RuH(CO){SCN}(PPh3)2(L)]{SCN} complexes (where L = benzimidazole, 2-(2-pyridyl)benzimidazole and 2,2′-bis(4,5-dimethylimidazolyl)) have been prepared and studied by IR, NMR, UV–Vis spectroscopy and X-ray crystallography. Electronic structures and bonding of the obtained complexes were defined on the basis of DFT method. Values of the ligand field parameter 10Dq and Racah’s parameters were estimated for the studied compounds, and the luminescence properties were determined.  相似文献   

3.
The reactions of [ReOX3(PPh3)2] (X = Cl, Br) with benzoylpyridine (bopy) have been examined and novel [ReOX2(bopyH)(PPh3)] oxocompounds have been obtained. The complexes were structurally and spectroscopically characterised. In the both structures two-electron reduced form of benzoylpyridine is coordinated to the central ion. The electronic structure of [ReOCl2(bopyH)(PPh3)] has been calculated with the density functional theory (DFT) method, and additional information about binding has been obtained by NBO analysis. The UV–Vis spectrum of the [ReOCl2(bopyH)(PPh3)] has been discussed on the basis of TDDFT calculations.  相似文献   

4.
J.G. Ma?ecki 《Polyhedron》2011,30(1):79-85
[RuHCl(CO)(PPh3)2(py)], [RuHCl(CO)(PPh3)2(pyIm)] and [RuCl(CO)(PPh3)2(pyoh)]·2CH3OH complexes (where py = pyridine, pyIm = imidazo[1,2-α]pyridine, pyoh = 2-hydroxy-6-methylpyridine) have been prepared and studied by IR, NMR, UV-Vis spectroscopy and X-ray crystallography. Electronic structures and bonding of the complexes were defined on the basis of DFT method, and the pyridine derivative ligands were compared on the basis of their donor-acceptor properties. Values of the ligand field parameter 10Dq and Racah’s parameters were estimated for the studied compounds, and the luminescence properties were determined.  相似文献   

5.
The paper presents a combined experimental and computational study of novel rhenium(III) complexes with the picolinate ligand – [ReCl2(pic)(PPh3)2] (1) and [ReBr2(pic)(PPh3)2] (2). Both complexes 1 and 2 have been characterised spectroscopically and structurally (by single-crystal X-ray diffraction). Complex 1 has been additionally studied by magnetic measurement. The magnetic behavior is characteristic of a mononuclear d4 low-spin octahedral Re(III) complex (3T1g ground state) and arises because of the large spin–orbit coupling (ζ = 2500 cm−1), which gives a diamagnetic ground state. DFT and time-dependent (TD)DFT calculations have been carried out for complex 1, and UV–vis spectra of the [ReX2(pic)(PPh3)2] compounds have been discussed on this basis.  相似文献   

6.
Novel [ReOX2(quin-2-c)(EPh3)] complexes (X = Cl, Br; E = As, P; quin-2-c = quinoline-2-carboxylate ion) have been prepared by treatment of [ReOX3(EPh3)2] with quinoline-2-carboxylic acid in acetone at room temperature. All the complexes were characterised by IR, UV–Vis spectroscopy and elemental analysis. The crystal and molecular structures have been determined for [ReOCl2(qiun-2c)(PPh3)] (1) and [ReOBr2(qiun-2c)(AsPh3)] (4). The electronic structure of 1 has been calculated with the density functional theory (DFT) method. The spin-allowed electronic transitions of 1 have been calculated with the time-dependent DFT method.  相似文献   

7.
The reactions of [ReX22-N2COPh-N′,O)(PPh3)2] with 4-phenylpyrimidine have been performed. As a result, the two complexes [ReX2(N2COPh)(4-PhPyr)(PPh3)2] (X = Cl, Br) (4-PhPyr = 4-phenylpyrimidine), isostructural in the solid state, have been obtained. The crystal and molecular structures of ([ReCl2(N2COPh)(4-PhPyr)(PPh3)2])2·CHCl3 (1) and ([ReBr2(N2COPh)(4-PhPyr)(PPh3)2])2·CHCl3 (2) have been determined. The electronic structure of [ReCl2(N2COPh)(4-PhPyr)(PPh3)2] has been examined using the density functional theory (DFT) method. The spin-allowed electronic transitions of 1 have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of [ReCl2(N2COPh)(4-PhPyr)(PPh3)2] has been discussed on this basis.  相似文献   

8.
Reaction of N-(2′-hydroxyphenyl)benzaldimines (abbreviated in general as H2L-R, where R stands for the para-substituent in the benzaldehyde fragment and H stands for the dissociable hydrogen atoms) with [Ru(PPh3)2(CO)2Cl2] affords a family of organoruthenium complexes of the type [Ru(PPh3)2(CO)(L-R)] where the N-(2′-hydroxyphenyl)benzaldimine ligand is coordinated to the metal center as tridentate C,N,O-donor. Structure of a representative complex has been determined by X-ray crystallography. All the [Ru(PPh3)2(CO)(L-R)] complexes are diamagnetic, and show characteristic 1H NMR signals and moderately intense MLCT transitions in the visible region. Cyclic voltammetry of the [Ru(PPh3)2(CO)(L-R)] complexes shows a reversible Ru(II)–Ru(III) oxidation within 0.38–0.68 V versus SCE, followed by an irreversible oxidation of the coordinated benzaldimine ligand within 1.09–1.27 V versus SCE. An irreversible reduction of the coordinated benzaldimine ligand is also observed near −1.1 V versus SCE. Potential of the Ru(II)–Ru(III) oxidation is observed to be sensitive to the nature of para-substituent R.  相似文献   

9.
The [ReOCl2(hmpbta)(AsPh3)] · MeCN, [ReOBr2(hmpbta)(AsPh3)] · MeCN, [ReOCl2(hmpbta)(PPh3)] · MeCN, [ReOBr2(hmpbta)(PPh3)] · MeCN, and [ReBr2(hmpbta)(PPh3)] · MeCN complexes have been prepared in the reactions of [ReOX3(EPh3)2] (X = Cl, Br; E = P, As) with 2-(2’-hydoxy-5′-methylphenyl)benzotriazole in molar ratio 1:1. All the compounds were structurally and spectroscopically characterized. The electronic structure of [ReOCl2(hmpbta)(AsPh3)] has been calculated with the density functional theory (DFT) method. The TDDFT/PCM calculations have been employed to produce a hundred of singlet excited-states starting from the ground-state geometry optimized in the gas phase, and the UV–Vis spectrum of [ReOCl2(hmpbta)(AsPh3)] has been discussed on this basis. The paper reports also X-ray structure and DFT calculations for the disubstituted [ReOCl(hmpbta)2] chelate.  相似文献   

10.
The reaction of CuX (X = Cl, Br, I) with a mixture of PPh3 and 1-alkyl-2-(naphthyl-α/β-azo)imidazole has synthesized mixed ligand complexes of the composition, [Cu(α/β-NaiR)(PPh3)X]. The spectroscopic characterization (IR, UV–Vis, 1H NMR) supports this formulation. The single crystal X-ray diffraction study of [Cu((α-NaiMe)(PPh3)I] (7a) (α-NaiMe = 1-methyl-2-(naphthyl-α-azo)imidazole) shows a distorted tetrahedral geometry about Cu(I). Cyclic voltammograms of the complexes show a high potential Cu(II)/Cu(I) couple and azo reductions. The [Cu(α/β-NaiR)(PPh3)I] complexes show an additional oxidative response at 0.4 V that is assigned to I/I A sharp anodic peak at ∼−0.2 V is assigned to the oxidation of metallic Cu, deposited on electrode surface upon scanning to the negative side of the SCE. DFT and TD-DFT computations of [Cu((α-NaiMe)(PPh3)I] (7a), [Cu((α-NaiMe)(PPh3)I]+ (7a+) and [Cu((α-NaiMe)(PPh3)I] (7a) were carried out to examine the electronic configuration and to explain the spectral and redox properties of the complexes.  相似文献   

11.
The reactions of [ReOX3(AsPh3)2] and [ReOX3(PPh3)2] with 2-(2′-hydroxyphenyl)-2-benzoxazoline (Hhbo) have been examined and [ReOX2(hbo)(AsPh3)] and [ReOX2(hbo)(PPh3)] (X = Cl, Br) complexes have been obtained. The crystal and molecular structures of [ReOCl2(hbo)(AsPh3)] (1) and [ReOBr2(hbo)(PPh3)] (4) have been determined. The electronic structures of 1 and 4 have been calculated with the density functional theory (DFT) method. The spin-allowed electronic transitions of 1 and 4 have been calculated with the time-dependent DFT method, and the UV–Vis spectra of these complexes have been discussed.  相似文献   

12.
The reactions of [ReOX3(AsPh3)2] and [ReOX3(PPh3)2] with 8-hydroxyquinoline (Hhqn) have been examined and the complexes [ReOX2(hqn)(AsPh3)] and [ReOX2(hqn)(PPh3)] (X = Cl, Br) have been obtained, respectively. The crystal and molecular structures of [ReOCl2(hqn)(AsPh3)] (1) and [ReOBr2(hqn)(PPh3)] (4) have been determined. The electronic structure of 1 has been calculated with the density functional theory (DFT) method. The spin-allowed electronic transitions of 1 have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of [ReOCl2(hqn)(AsPh3)] has been discussed on this basis.  相似文献   

13.
The reactions of [RuHCl(CO)(PPh3)3] and [(C6H6)RuCl2]2 with 2-benzoylpyridine have been examined, and two novel ruthenium(II) complexes – [RuCl(CO)(PPh3)2(C5H4NCOO)] and [RuCl2(C12H9NO)2] – have been obtained. The compounds have been studied by IR and UV–Vis spectroscopy, and X-ray crystallography. The molecular orbital diagrams of the complexes have been calculated with the density functional theory (DFT) method. The spin-allowed singlet–singlet electronic transitions of the compounds have been calculated with the time-dependent DFT method, and the UV–Vis spectra of the compounds have been discussed on this basis.  相似文献   

14.
The reaction of [ReOCl3(PPh3)2] with 5,6-diphenyl-3-(2-pyridyl)-1,2,4-trazine (dppt) has been examined and [ReCl3(OPPh3)(dppt)] has been obtained. The triphenylphosphine oxide can be easily replaced by PPh3 in the reaction of [ReCl3(OPPh3)(dppt)] with an excess of triphenylphosphine. The [ReCl3(OPPh3)(dppt)] and [ReCl3(PPh3)(dppt)] complexes have been structurally and spectroscopically characterized. Their molecular orbital diagrams have been calculated with the density functional theory (DFT) method, and their electronic spectra have been discussed on the basis of time-dependent DFT calculations. The compound [ReCl3(OPPh3)(dppt)] has been studied additionally by magnetic measurement. The magnetic behavior is characteristic of mononuclear complexes with d4 low-spin octahedral Re(III) complexes (3T1g ground state) and arise because of the large spin–orbit coupling (ζ = 2500 cm−1), which gives diamagnetic ground state.  相似文献   

15.
The p-tolylimido rhenium(V) complexes [Re(p-NC6H4CH3)X3(EPh3)2] (X = Cl, Br; E = As, P) and [Re(p-NC6H4CH3)Cl2(hmpbta)(PPh3)]·MeCN have been synthesized and characterized spectroscopically and structurally. The electronic spectra of [Re(p-NC6H4CH3)Cl3(PPh3)2] and [Re(p-NC6H4CH3)Cl2(hmpbta)(PPh3)](Hhmpbta-2-(2′-hydroxy-5′-methylphenyl)benzotriazole) were investigated at the TDDFT level employing B3LYP functional in combination with LANL2DZ. Additional information about bonding between the rhenium atom and p-tolylimido ligand in the complexes [Re(p-NC6H4CH3)Cl3(PPh3)2] and [Re(p-NC6H4CH3)Cl2(hmpbta)(PPh3)] was obtained by NBO analysis.  相似文献   

16.
The [(PPh3)2RuHCl(CO)(Hmtpo)] complex has been prepared and studied by IR, NMR, UV–VIS spectroscopy and X-ray crystallography. The complex was prepared in reactions of [RuHCl(CO)(PPh3)3] with 7-hydroxy-5-methyl[1,2,4]triazolo[1,5-a]pyrimidine in methanol. The electronic structure and UV–Vis spectrum of the obtained compound have been calculated using the TD–DFT method.  相似文献   

17.
The [ReCl3(MeCN)(PPh3)2] complex reacts with bis(pyrazol-1-yl)methane (bpzm) to give [ReCl3(bpzm)(PPh3)]. This compound has been studied by IR, UV–Vis spectroscopy, magnetic measurement and X-ray crystallography. The molecular orbital diagram of [ReCl3(bpzm)(PPh3)] has been calculated with the density functional theory (DFT) method. The spin-allowed triplet–triplet electronic transitions of [ReCl3(bpzm)(PPh3)] have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of the title compound has been discussed on this basis. The magnetic behavior is characteristic of a mononuclear d4 low-spin octahedral Re(III) complex (3T1g ground state) and arises because of the large spin–orbit coupling (ζ = 2500 cm−1), which gives a diamagnetic ground state.  相似文献   

18.
J.G. Ma?ecki  A. Maroń 《Polyhedron》2011,30(7):1225-1232
[RuH(CO)(dpa)(PPh3)2]X and [RuHX(CO)(pyCHPh)(PPh3)2] (X = Cl, NCS) complexes (where dpa = 2,2′-dipyridylamine, pyCHPh = 4-(3-phenylpropyl)pyridine) have been prepared and studied using IR, NMR, UV-Vis spectroscopies and X-ray crystallography. The electronic structures and bonding of the obtained complexes were defined on the basis of the DFT method. The electronic spectra of the complexes were calculated and associated with the structure of the molecular orbitals of the complexes. The luminescence properties of the complexes were determined.  相似文献   

19.
Novel [ReOX(quin-2-c)2] complexes (X = Cl, Br; quin-2-c = quinoline-2-carboxylate ion) have been prepared by treatment of [ReOX3(AsPh3)2] with an excess of quinoline-2-carboxylic acid in acetonitrile. The complexes were characterised structurally and spectroscopically. The electronic structure of [ReOBr(quin-2-c)2] has been calculated with the density functional theory (DFT) method, and additional information about binding has been obtained by NBO analysis. The UV–Vis spectrum of [ReOBr(quin-2-c)2] has been discussed on the basis of TD-DFT calculations.  相似文献   

20.
The [ReOCl3(OAsPh3)(AsPh3)] and [ReOCl3(PPh3)2] complexes react with bis(pyrazol-1-yl)methane (bpzm) to give [ReOCl3(bpzm)]. The compound has been studied by IR, UV–Vis spectroscopy, and X-ray crystallography. The molecular orbital diagram of the oxocomplex has been calculated with the density functional theory (DFT) method. The spin-allowed singlet–singlet electronic transitions of [ReOCl3(bpzm)] have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of the title compound has been discussed on this basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号