首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The coordination mode of complexes formed in the systems Cu(II)/NMP/PA; (NMP =adenosine 5′-monophosphate, cytidine 5′-monophosphate; PA = 1,4-diaminopropane (putrescine, Put), 1,7-diamino-4-azaheptane (3,3-tri) and 1,11-diamino-4,8-diazaundekane (3,3,3-tet)) was determined on the basis of the equilibrium and spectroscopic studies. The presence of the following mixed complexes was established: Cu(CMP)H(Put), Cu(AMP)H2(3,3-tri) and Cu(CMP)H2(3,3-tri), Cu(CMP)H4(3,3-tri) and coordination compounds of MLL′ type-Cu(CMP)(3,3,3-tet), Cu(AMP)(3,3,3-tet). A significant influence of the polyamine length on the solution structure of the complexes was observed. In mixed-ligand complexes Cu(NMP)(3,3,3-tet) a {N4, O} chromophore is formed, and metallation involves all nitrogen atoms from 3,3,3-tet. In the analogous system with 3,3-tri, protonated complexes occur. Non-covalent intramolecular interaction between the protonated amine groups and donor atoms from the purine ring from the nucleotide results in an increase of complex stability.  相似文献   

2.

The mode of coordination of complexes formed in the systems Cd(II) or Hg(II)/cytidine/di- or triamine is proposed on the basis of equilibrium and spectroscopic studies. Mercury(II) binds much more strongly to cytidine and polyamine (PA) than cadmium. It was found from equilibrium and 13 C NMR studies that in the Hg(II) and Cd(II)/ Cyd /di- or triamine complexes, metallation mainly involves the N(3) atom of the pyrimidine base of the nucleoside and m NH x + groups from PA. In MLL' complexes of both metals with diamines, all available donor nitrogen atoms of the polyamine are involved in coordination. In analogous systems with triamines, interaction of all nitrogen atoms is observed for Cd(II) systems as well as in the Hg( Cyd )(2,3- tri ) species. Only two nitrogen atoms of the polyamine coordinate in ternary Hg(II) complexes with dien, 3,3-tri and Spd .  相似文献   

3.
Formation of ternary Cd(II) and Hg(II) complexes with cytidine 5′-monophosphate (CMP) and triamines has been studied. Complexes M(CMP)(H x PA) and M(CMP)(PA) (M?=?Cd, Hg; PA?=?polyamine) were detected and overall stability constants and equilibrium constants for their formation determined. The mode of coordination in the complexes has been proposed on the basis of the equilibrium and 13C, 31P NMR and IR studies. In the Hg(II) systems, metalation involves the donor endocyclic N(3) atom, the CMP phosphate group and nitrogen donor atoms of PA. Relative to the Hg/CMP binary systems, the presence of a polyamine in ternary systems does not change the metal–nucleotide mode of coordination. In ternary systems including Hg(II) ions, the occurrence of noncovalent interactions has not been detected. Cd(II) ions form molecular complexes as well as protonated species. Introduction of a polyamine to the Cd/CMP system changes the coordination mode of the nucleotide. The phosphate group of CMP is inactive in binary complexes (metalation by the N(3) atom) but is involved in coordination in heteroligand species. In contrast to other polyamines studied, in the system including 1,7-diamino-4-azaheptane (3,3-tri), the phosphate group of CMP in Cd(CMP)(H3,3-tri) does not participate in metalation but is engaged in intramolecular noncovalent interactions that stabilize the complex.  相似文献   

4.
Two crystal structures of EuIII complexes with CDTA (trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetate), [C(NH2)3]3[Eu2(CDTA)2(H2O)2]ClO4 · 7H2O (I) and [C(NH2)3][Eu(CDTA)(H2O)] · 2.375H2O (II), are presented. Both structures are polymeric and the central metal ions are eight-coordinate. The first coordination sphere of each EuIII cation contains five carboxylate oxygen atoms, two nitrogen ones and a water molecule. For I, as well as for water solutions of the EuIII–CDTA complex at various pH values, the spectroscopic (UV–Vis) properties were investigated.  相似文献   

5.
Two new mixed ligand complexes of copper(II) with acetylacetonate (acac), 2,2′-bipyridine (bpy) and 1,10-phenanthroline (phen) belonging to the class of cytotoxic and antineoplastic compounds known as CASIOPEINAS® were synthesized and structurally characterized. Crystals of both complexes [Cu(acac)(bpy)(H2O)]NO3 · H2O (1), [Cu(acac)(phen)Br] (2) contain square pyramidal Cu(II) complex species. In frozen solution both compounds give well resolved EPR spectra with very similar parameters.  相似文献   

6.
7.
A novel zinc(II) polymeric complex of the formula {[Zn(tyr)2(H2O)]H2O}n (1) containing l-tyrosine (tyr) was prepared in the crystalline form and characterized by X-ray diffraction, NIR–Vis–UV electronic and IR–FIR vibrational spectroscopy methods. Additionally, for the [Cu(tyr)2]n (2) polymer, the vibrational, electronic, EPR spectroscopic and magnetic properties were studied. l-tyrosine in coordination polymers acts as a N,O-bidendate ligand and presents exobidentate bridging with a μ-carboxyl group. The μ-carboxyl exobidentate bridging coordination mode leads to a one-dimensional chain structure. The ZnN2O3O′ chromophore has an elongated pseudo-octahedral geometry (1), whereas the CuN2O2O′ (2) chromophore presents a distorted square-pyramidal environment with τ = 0.19 around the Cu2+ ion.  相似文献   

8.
Three new mononuclear complexes of copper(II), viz. [Cu(L)(N3)Cl] (1), [Cu(L′)(H2O)]ClO4 (2) and [Cu(L″)] (3) where L = N-(3-aminopropyl)-N-methylpropane-1,3-diamine, L′ = 2-(N-{3-[(3-aminopropyl)(methyl)amino]propyl}ethanimidoyl)phenolate ion and L″ = 2,2′-{(methylimino)bis[propane-3,1-diylnitrilo(1E)eth-1-yl-1-ylidene]}diphenolate ion, have been prepared. The synthesis of complex 1 has been achieved by reacting copper chloride with the triamine (L) and sodium azide in a 1:1:1 M ratio. The other two compounds have been synthesized by the reaction of copper perchlorate with the same triamine, L, plus 2-hydroxyacetophenone in a molar ratio of 1:1:1 (for 2) and 1:1:2 (for 3), so that the respective tetradentate and pentadentate Schiff bases HL′ and H2L″ are formed in situ to bind the copper(II) ions. The complexes have been characterized by microanalytical, spectroscopic and single crystal X-ray diffraction studies. Structural studies reveal that the mononuclear units of all the three complexes adopt a distorted square pyramidal geometry and are held together by either intermolecular H-bonding (in 1 and 2) or C-H?π interactions (in 3) to form supramolecular networks in the solid state.  相似文献   

9.
Histamine-copper(II) complexes have been studied using experimental methods and density functional theory. Preferred coordination centres and possible structures of aqua complexes have been determined. On the basis of equilibrium and spectroscopic studies the endocyclic nitrogen atom has been confirmed to as a coordinating centre in the CuH(Hist), Cu(Hist) and Cu(Hist)(OH) complexes. The involvement of the amino group linked to the aliphatic chain in the Cu(II) coordination has been additionally proven by the detection of the Cu(Hist) and Cu(Hist)(OH) complexes. The computed stabilisation energies demonstrate that the Cu(H2O)4(Hist) and Cu(OH)(Hist)(H2O)3 chelates as well as the CuH(H2O)5(Hist) compounds are the most energetically stable in the media studied. The most stable conformers of the neutral form of the histamine molecule are in the Cu(Hist) and Cu(Hist)(OH) species. These complexes have a gauche structure stabilized by an intramolecular hydrogen bond. The electronic Jahn-Teller effect is mainly responsible for the tetragonal distortion of the octahedral MHL-(H2O)5 complex. Strong electrostatic interactions and polarisation effects contribute to the enhanced stability for all of the complexes studied. The results of the computations confirm that histamine is effective in coordinating to the Cu(II) ions in biological systems. The theoretical results fully confirm the coordination modes proposed in the experiment and predict the most reliable geometry and energetic stability of the aqua complexes.  相似文献   

10.
Three complexes of magnesium phthalocyaninato(2−) derivatives in the crystalline form, MgPc(H2O)·(C2H5)3N – (I), MgPc(H2O)2·2(C2H5)3N – (II) and MgPc(H2O)2 – (III), depending on the thermal recrystallisation conditions were obtained and structurally characterised. In complex I, the Mg center exhibits square-pyramidal (4 + 1) coordination environment, whereas in II and III the Mg center of MgPc the biaxial (4 + 2) coordination. Owing to the interaction of the positively charged Mg center with oppositely charged oxygen atom of water molecule in an axial position in I, the Mg atom is significantly displaced (0.451(2) Å) from the plane defined by four isoindole N atoms and leads to distortion of the planar Pc(2−) macrocycle to the saucer-shape form. In II and III due to the biaxial (4 + 2) coordination of the Mg center of MgPc, the Mg atom lies on a N4-isoindole plane. The triethylamine solvent molecules in I and II interact with mono or bis(aqua)magnesium phthalocyanine via   O–H??N hydrogen bonds. The axial Mg–O bond in I is significantly shorter than that in the II and III complexes. The strength of the Mg–O bond in these complexes is correlated with their thermal stability. From among the complexes only complex I exhibits an intense near-IR absorption band in the solid-state. The spectra of I, II and III in solution are very similar.  相似文献   

11.
Investigation of the CuCl2/H2Memal/L (H2Memal = methylmalonic acid, L = 1,10-phenanthroline or 2,2′-bipyridine) reaction system in MeOH and various molar ratios has lead to the isolation of two one-dimensional coordination polymers presenting the [Cu(L)(Memal)] repeating unit (1, L = 1,10-phen; 2, L = 2,2′-bpy). The Memal2− ligand adopts the bidentate [chelating] + unidentate coordination mode between the CuII ions. Magnetic susceptibility measurements on 1 and 2 indicated the existence of weak ferromagnetic intrachain interactions and X-band EPR spectra from powdered samples of 1 and 2 are consistent with the stereochemistry of the CuII ions and with the presence of weak exchange interactions.  相似文献   

12.
The potentially pentadentate chelate 2,6-diacetylpyridine-bis(N-methyl-S-methyldithiocarbazate) (Nmedapsme) has been synthesized and structurally characterized by X-ray diffraction. Its reactions with nickel(II) salts did not lead to pentadentate coordinated ligand complexes but ternary complexes of general formula, [Ni(Nmedapsme)(nmesme)L]X·H2O (L = Br, I; X = I, BF4) where Nmedapsme binds as a tridentate and nmesme = N-methyl-S-methyldithiocarbazate. The related ternary nickel(II) complexes of formula, Ni(Nmedapsme)(nmetsc)Br2 has also been prepared and characterized. X-ray crystal structures of [Ni(Nmedapsme)(nmesme)I]I·H2O and [Ni(Nmedapsme)(nmesme)Br]BF4·H2O revealed that, in these complexes, the Nmedapsme ligand acts as a tridentate NNN donor while the distal S-donors are not coordinated. The bidentate (NS) ligand, nmesme coordinates to the nickel(II) ion via the amino nitrogen and the thione sulfur atoms, the sixth coordination site is occupied by an anion. In both complexes, the nickel(II) ion adopts a distorted octahedral configuration. The complex [Cu(nmesme)2(ONO2)]NO3 was obtained from an unsuccessful attempt to complex copper(II) with Nmedapsme. Hydrolysis of the parent Schiff base Nmedapsme occurred during complexation. An X-ray crystallographic structure analysis shows that the complex, [Cu(nmesme)2(ONO2)]NO3 has an approximately square-pyramidal geometry with the two nmesme ligands coordinated to the copper(II) ion as NS bidentate chelating agents via the amino nitrogen and thione sulfur atoms and the fifth coordination position of copper(II) is occupied by a monodentate nitrate ligand.  相似文献   

13.
The reaction of cis-[RuCl2(DMSO)4] with a family of aromatic and heterocyclic acid hydrazides yielded new complexes of the general formula trans-[RuCl2(DMSO)2(hydrazide)] · nH2O (n = 0; 16; n = 1; 7). The new complexes have been characterized by IR, UV–Vis and 1H NMR spectroscopic methods. In addition, the structure of one of the complexes, [RuCl2(DMSO)2(tcah)] · H2O (tcah = thiophene-2-carboxylic acid hydrazide), has been determined by single crystal X-ray diffraction. All the studies reveal the neutral bidentate coordination of the hydrazide ligands through the acyl oxygen and amine nitrogen atoms. The electron transfer properties of the complexes were studied by cyclic voltammetry and all the complexes except one show an irreversible/quasi-reversible reduction wave (RuII/RuI) and an uncoupled oxidation peak (RuIII/ RuII). The preliminary DNA-binding ability of the complexes, studied with herring sperm DNA, shows the binding of the complexes with DNA with a lesser affinity than classical intercalators. The complexes have also been screened for their antibacterial activity against five pathogenic bacteria.  相似文献   

14.
Two new copper(II) complexes {[Cu(H2biim)(H2O)(suc)](H2O)}n (1) and {[Cu(H2biim)2(H2O)][Cu(H2biim)2(glut)](glutH)(NO3) · 2.5H2O}n (2) (H2biim, 2,2′-biimidazole; suc, succinate dianion; glut, glutarate dianion) have been synthesized and characterized by single crystal X-ray diffraction study and thermal analysis. Complex 1 comprises of 1D zigzag coordination polymers, elongated along the crystallographic b-axis, connected through H-bonding and face-to-face π–π interactions to form a robust 3D network. Whereas complex 2 is built up of bischelated [Cu(II)(H2biim)2]2+ units, glutarate and nitrate anions and water molecules, held together through an extensive H-bonded system. The resulting 3D supramolecular architecture defines channels which are filled by lattice water molecules and disordered nitrate anions.  相似文献   

15.
Copper(I) complexes of short-bite aminobis(phosphonite), PhN{P(–OC10H6(μ-S)C10H6O–)}2 (1) have been synthesized. Reactions of 1 with an excess of CuX (X = Cl, Br, and I) afforded the ligand-bridged binuclear complexes, [PhN(PR-κP)2{Cu(μ-X)(MeCN)}2] (2, X = Cl; 3, X = Br; 4, X = I; R = –OC10H6(μ-S)C10H6O–), whereas treatment with 0.5 equiv. of [Cu(MeCN)4]PF6 produces the mononuclear bischelated cationic complex, [{PhN(PR-κP)2}2Cu](PF6) (5). Single crystal X-ray structures of complexes 3 and 4 are reported. Complex 3 shows strong π–π stacking interactions between the naphthyl moieties, whereas complex 4 shows ligand-supported Cu?Cu metallophilic interactions.  相似文献   

16.
Four cyano bridged Cu(II)–Pd(II) heterometallic complexes, [Cu(dpt)Pd(CN)4]n (1), {[Cu2(medpt)2Pd(CN)4](ClO4)2 · 3H2O}n (2), {[Cu2(dien)2Pd(CN)4](ClO4)2 · 2CH3OH}n (3) and {[Cu2(iPrdien)2Pd(CN)4](ClO4)2 · 2H2O}n (4) [dpt = 3,3′-iminobispropylamine; medpt = 3,3′-diamino-N-methyldipropylamine; dien = diethylenetriamine and iprdien = N′-isopropyldiethylenetriamine] have been synthesized and characterized by single crystal X-ray diffraction analysis, magnetic measurement and thermal study. Complexes 1, 2 and 3 are 1D coordination polymers, while 4 presents a 2D network. In 1, the cis-directed cyanide ligands of [Pd(CN)4]2− anions link two Cu(dpt) units to form a neutral coordination polymer, whereas in 2, 3 and 4, all the cyanide groups of [Pd(CN)4]2− take part in bonding with four adjacent Cu(II) ions, resulting in cationic coordination polymers counterbalanced by perchlorate anions. The structures are compared with those of analogous [Ni(CN)4]2− derivatives. The magnetic behavior shows antiferromagnetic interactions in all the complexes.  相似文献   

17.
A detailed study of iron (III)–citrate speciation in aqueous solution (θ = 25 °C, Ic = 0.7 mol L−1) was carried out by voltammetric and UV–vis spectrophotometric measurements and the obtained data were used for reconciled characterization of iron (III)–citrate complexes. Four different redox processes were registered in the voltammograms: at 0.1 V (pH = 5.5) which corresponded to the reduction of iron(III)–monocitrate species (Fe:cit = 1:1), at about −0.1 V (pH = 5.5) that was related to the reduction of FeL25−, FeL2H4− and FeL2H23− complexes, at −0.28 V (pH = 5.5) which corresponded to the reduction of polynuclear iron(III)–citrate complex(es), and at −0.4 V (pH = 7.5) which was probably a consequence of Fe(cit)2(OH)x species reduction. Reversible redox process at −0.1 V allowed for the determination of iron(III)–citrate species and their stability constants by analyzing Ep vs. pH and Ep vs. [L4−] dependence. The UV–vis spectra recorded at varied pH revealed four different spectrally active species: FeLH (log β = 25.69), FeL2H23− (log β = 48.06), FeL2H4− (log β = 44.60), and FeL25− (log β = 38.85). The stability constants obtained by spectrophotometry were in agreement with those determined electrochemically. The UV–vis spectra recorded at various citrate concentrations (pH = 2.0) supported the results of spectrophotometric–potentiometric titration.  相似文献   

18.
Summary Acidity (dehydronation) constants of N,N-dimethylthreonine (DMT) and stability constants of its complexes with Cu+2, Ni+2, and Co+2 were determined in aqueous solution by means of potentiometric titration. UV/Vis spectra were also taken during the titration. It is suggested thatDMT acts as a bidentate ligand toward copper(II) by engaging either (a) amino and carboxyl groups (in [Cu(DMT)] and [Cu(DMT)2]), or, (b) upon dehydronation, amino and hydroxyl groups (in [Cu(DMT)H–1], [Cu(DMT)2H–1], and [Cu(DMT)2H–2]). It is suggested that the coordination in threoninato andallo-threoninato complexes is similar to that described under (a).Based upon Master of Science thesis submitted to the University of Zagreb, Croatia byB. Blagovi  相似文献   

19.
[RuH(CO)(SCN)(PPh3)3] and [RuH(CO){SCN}(PPh3)2(L)]{SCN} complexes (where L = benzimidazole, 2-(2-pyridyl)benzimidazole and 2,2′-bis(4,5-dimethylimidazolyl)) have been prepared and studied by IR, NMR, UV–Vis spectroscopy and X-ray crystallography. Electronic structures and bonding of the obtained complexes were defined on the basis of DFT method. Values of the ligand field parameter 10Dq and Racah’s parameters were estimated for the studied compounds, and the luminescence properties were determined.  相似文献   

20.
The organotin(IV) complexes R2Sn(tpu)2 · L [L = 2MeOH, R = Me (1); L = 0: R = n-Bu (2), Ph (3), PhCH2 (4)], R3Sn(Hthpu) [R = Me (5), n-Bu (6), Ph (7), PhCH2 (8)] and (R2SnCl)2 (dtpu) · L [L = H2O, R = Me (9); L = 0: R = n-Bu (10), Ph (11), PhCH2 (12)] have been synthesized, where tpu, Hthpu and dtpu are the anions of 6-thiopurine (Htpu), 2-thio-6-hydroxypurine (H2thpu) and 2,6-dithiopurine (H2dtpu), respectively. All the complexes 1-12 have been characterized by elemental, IR, 1H, 13C and 119Sn NMR spectra analyses. And complexes 1, 2, 7 and 9 have also been determined by X-ray crystallography, complexes 1 and 2 are both six-coordinated with R2Sn coordinated to the thiol/thione S and heterocyclic N atoms but the coordination modes differed. As for complex 7 and 9, the geometries of Sn atoms are distorted trigonal bipyramidal. Moreover, the packing of complexes 1, 2, 7 and 9 are stabilized by the hydrogen bonding and weak interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号