首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A PNA monomer containing thymine as nucleobase (1) was synthesized, characterized and coupled to the pyrazolyl containing ligand 3,5-Me2pz(CH2)2N((CH2)3COOH)(CH2)2NHBoc (2) and to a modified cysteine S-(carboxymethyl-pentafluorphenyl)-N-[(trifluor)carbonyl]-l-cysteine methyl ester (3) yielding the bifunctional chelators 6 and 7, respectively. Reactions of 6 and 7 with the Re(I) tricarbonyl starting material [Re(CO)3(H2O)3]Br afforded the complexes fac-[Re(CO)33-6)]+ (8) and fac-[Re(CO)33-7)] (9), respectively. The identity of 8 and 9 has been established based on IR spectroscopy, elemental analysis, ESI-MS spectrometry and HPLC. The multinuclear NMR spectroscopy (1H, 13C, g-COSY, g-HSQC) has also been very informative in the case of complex 8, showing the presence of rotamers in solution. For 9 the NMR spectrum was too complex due to the presence of rotamers and diastereoisomers. The radioactive congeners of complexes 8 and 9, fac-[99mTc(CO)33-6)]+ (8a) and fac-[99mTc(CO)33-7)] (9a), have been prepared by reacting the precursor fac-[99mTc(CO)3(H2O)3]+ with the corresponding ligands being their identity established by comparing their HPLC chromatograms with the HPLC of the rhenium surrogates.  相似文献   

2.
The oxidative addition of CH3I to planar rhodium(I) complex [Rh(TFA)(PPh3)2] in acetonitrile (TFA is trifluoroacetylacetonate) leads to the formation of cationic, cis-[Rh(TFA)(PPh3)2(CH3)(CH3CN)][BPh4] (1), or neutral, cis-[Rh(TFA)(PPh3)2(CH3)(I)] (4), rhodium(III) methyl complexes depending on the reaction conditions. 1 reacts readily with NH3 and pyridine to form cationic complexes, cis-[Rh(TFA)(PPh3)2(CH3)(NH3)][BPh4] (2) and cis-[Rh(TFA)(PPh3)2(CH3)(Py)][BPh4] (3), respectively. Acetylacetonate methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(I)] (5), was obtained by the action of NaI on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] in acetone at −15 °C. Complexes 1-5 were characterized by elemental analysis, 31P{1H}, 1H and 19F NMR. For complexes 2, 3, 4 conductivity data in acetone solutions are reported. The crystal structures of 2 and 3 were determined. NMR parameters of 1-5 and related complexes are discussed from the viewpoint of their isomerism.  相似文献   

3.
Reaction of cis-[ReCl(NHC)(CO)4] cis-[1] (NHC = NH,NH-substituted saturated cyclic diaminocarbene) with diphosphine (2-F-C6H4)2P-CH2CH2-P(C6H4-2-F)22 yields complex fac-[Re(NHC)(2)(CO)3]Cl fac-[3]Cl. Deprotonation of the NH,NH-NHC ligand in fac-[3]Cl with KOtBu leads to an intramolecular nucleophilic aromatic substitution of one fluorine atom from each -P(C6H4-2-F) group by the NHC ring nitrogen atoms with formation of complex fac-[4]Cl bearing a facially coordinated [11]ane-P2CNHC ligand. Reaction of cis-[MnBr(NHC)(CO)4] cis-[5] (NHC = NH,NH-substituted saturated cyclic diaminocarbene) with diphosphine 2 yields complex [MnBr(NHC)(2)(CO)2] [6] without substitution of the bromo ligand and with the phosphine donors from the bidentate diphosphine occupying one cis and one trans position to the NHC donor.  相似文献   

4.
The ruthenium and iron dicarbonyl complexes Ru(MeP(CH2CH2PMe2)2)(CO)2 (1), Ru(MeP(CH2CH2CH2PMe2)2)(CO)2 (2) and Fe(MeP(CH2CH2CH2PMe2)2)(CO)2 (3) bearing strong donor tridentate phosphine ligands were prepared and fully characterised. The structures of the complexes have been established by X-ray diffraction studies. Oxidative addition of MeI to 1-3 proceeds instantaneously at room temperature and affords the corresponding octahedral cationic complexes fac,cis-[RuMe(MeP(CH2CH2PMe2)2)(CO)2]I (5a) and mer,cis-[RuMe(MeP(CH2CH2PMe2)2)(CO)2]I (5b), mer,trans-[MMe(MeP(CH2CH2CH2PMe2)2)(CO)2]I (6a (M=Ru); 7a (M=Fe)) and mer,cis-[MMe(MeP(CH2CH2CH2PMe2)2)(CO)2]I (6b (M=Ru); 7b (M=Fe)), respectively. The triphosphine preferentially adopts a facial arrangement in the case of the ethylene bridged tridentate ligand (5a) and a meridional arrangement in the case of the trimethylene bridged ligand (6a-7b). mer,cis-[RuMe(MeP(CH2CH2CH2PMe2)2)(CO)2]I (6a) undergoes CO insertion to the acetyl complex mer, trans-[Ru(COMe)(MeP(CH2CH2CH2PMe2)2)(CO)2]I (8). Attempts to produce a ketene complex from the deprotonation of 8 were not successful. The acetyl protons in 8 show very low acidity and no reaction occurred when the complex was reacted with bases such as DBU, BEMP (2-tert-Butylimino-2-diethylamino-1,3-dimethyl-perhydro-1,3,2-diazaphosphorine) or LDA.  相似文献   

5.
Hydride complex RuH2(PFFP)2 (1) [PFFP = (CF3CH2O)2PN(CH3)N(CH3)P(OCH2CF3)2] was prepared by allowing the compound RuCl4(bpy) · H2O (bpy = 1,2-bipyridine) to react first with the phosphite PFFP and then with NaBH4. Chloro-complex RuCl2(PFFP)2 (2) was also prepared, either by reacting RuCl4(bpy) · H2O with PFFP and zinc dust or by substituting triphenylphosphine with PFFP in the precursor complex RuCl2(PPh3)3. Hydride derivative RuH2(POOP)2 (3) (POOP = Ph2POCH2CH2OPPh2) was prepared by reacting compound RuCl3(AsPh3)2(CH3OH) first with the phosphite POOP and then with NaBH4. Depending on experimental conditions, treatment of carbonylated solutions of RuCl3 · 3H2O with POOP yields either the cis- or trans-RuCl2(CO)(PHPh2)(POOP) (4) derivative. Reaction of both cis- and trans-4 with LiAlH4 in thf affords dihydride complex RuH2(CO)(PHPh2)(POOP) (5). Chloro-complex all-trans-RuCl2(CO)2(PPh2OMe)2 (6) was obtained by reacting carbonylated solutions of RuCl3 · 3H2O in methanol with POOP. Treatment of chloro-complex 6 with NaBH4 in ethanol yielded hydride derivative all-trans-RuH2(CO)2(PPh2OMe)2 (7). The complexes were characterised spectroscopically and the X-ray crystal structures of complexes 1, 3, cis-4 and 6 were determined.  相似文献   

6.
Quantum chemical calculations using DFT at the B3LYP level have been carried out for the reaction of ethylene with the group-7 compounds ReO2(CH3)(CH2) (Re1), TcO2(CH3)(CH2) (Tc1) and MnO2(CH3)(CH2) (Mn1). The calculations suggest rather complex scenarios with numerous pathways, where the initial compounds Re1-Mn1 may either engage in cycloaddition reactions or numerous addition reactions with concomitant hydrogen migration. There are also energetically low-lying rearrangements of the starting compounds to isomers which may react with ethylene yielding further products. The [2 + 2]Re,C cycloaddition reaction of the starting molecule Re1 is kinetically and thermodynamically favored over the [3 + 2]C,O and [3 + 2]O,O cycloadditions. However, the reaction which leads to the most stable product takes place with initial rearrangement to the dioxohydridometallacyclopropane isomer Re1a that adds ethylene with concomitant hydrogen migration yielding Re1a-1. The latter reaction has a slightly higher barrier than the [2 + 2]Re,C cycloaddition reaction. The direct [3 + 2]C,O cycloaddition becomes more favorable than the [2 + 2]M,C reaction for the starting compounds Tc1 and Mn1 of the lighter metals technetium and manganese but the calculations predict that other reactions are kinetically and thermodynamically more favorable than the cycloadditions. The reactions with the lowest activation barriers lead after rearrangement to the ethyl substituted dioxometallacyclopropanes Tc1a-1 and Mn1a-1. The manganese compound exhibits an even more complex reaction scenario than the technetium compounds. The thermodynamically most stable final product of ethylene addition to Mn1 is the ethoxy substituted metallacyclopropane Mn1a-2 which has, however, a high activation barrier.  相似文献   

7.
The compounds [MoCl(NAr)2R] (R=CH2CMe2Ph (1) or CH2CMe3(2); Ar=2,6-Pri2C6H3) have been prepared from [MoCl2(NAr)2(dme)] (dme=1,2-dimethoxyethane) and one equivalent of the respective Grignard reagent RMgCl in diethyl ether. Similarly, the mixed-imido complex [MoCl2(NAr)(NBut)(dme)] affords [MoCl(NAr)(NBut)(CH2CMe2Ph)] (3). Chloride substitution reactions of 1 with the appropriate lithium reagents afford the compounds [MoCp(NAr)2(CH2CMe2Ph)] (4) (Cp=cyclopentadienyl), [MoInd(NAr)2(CH2CMe2Ph)] (5) (Ind=Indenyl), [Mo(OBut)(NAr)2(CH2CMe 2Ph)] (6), [MoMe(NAr)2(CH2CMe2Ph)] (7), [MoMe(PMe3)(NAr)2(CH2CMe 2Ph)] (8) (formed in the presence of PMe3) and [Mo(NHAr)(NAr)2(CH2CMe2P h)](9). In the latter case, a by-product {[Mo(NAr)2(CH2CMe2Ph) ]2(μ-O)}(10) has also been isolated. The crystal structures of 1, 4, 5 and 10 have been determined. All possess distorted tetrahedral metal centres with cis near-linear arylimido ligands; in each case (except 5, for which the evidence is unclear) there are α-agostic interactions present.  相似文献   

8.
N-thioamide thiosemicarbazone derived from 4-(methylthio)benzaldehyde (R = H, HL1; R = Me, HL2 and R = Ph, HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in methanol gave the adducts [ReX(CO)3(HLn)] (1a X = Cl, n = 1; 1a′ X = Br, n = 1; 1b X = Cl, n = 2; 1b′ X = Br, n = 2; 1c X = Cl, n = 3; 1c′ X = Br, n = 3) in good yield.All the compounds have been characterized by elemental analysis, mass spectrometry (ESI), IR and 1H NMR spectroscopic methods. Moreover, the structures of HL2, HL3, HL3·(CH3)2SO and 1b′·H2O were also elucidated by X-ray diffraction. In 1b′, the rhenium atom is coordinated by the sulphur and the azomethine nitrogen atoms (κS,N3) forming a five-membered chelate ring, as well as three carbonyl and bromide ligands. The resulting coordination polyhedron can be described as a distorted octahedron.The structure of the dimers is based on rhenium(I) thiosemicarbazonates [Re2(L1)2(CO)6] (2a), [Re2(L2)2(CO)6] (2b) and [Re2(L3)2(CO)6] (2c) as determined by X-ray studies. Methods of synthesis were optimized to obtain amounts of these thiosemicarbazonate complexes. In these compounds the dimer structures are achieved by Re-S-Re bridges, where S is the thiolate sulphur from a κS,N3-bidentate thiosemicarbazonate ligand.Some single crystals isolated in the synthesis of 2b contain [Re(L4)(L2)(CO)3] (3b) where L4 (=2-methylamine-5-(para-methylsulfanephenyl)-1,3,4-thiadiazole) is originated in a cyclization process of the thiosemicarbazone. Furthermore, the rhenium atom is coordinate by the sulphur and the thioamidic nitrogen of the thiosemicarbazonate (κS,N2) affording a four-membered chelate ring.  相似文献   

9.
The interaction of di(2-picolyl)amine (1) and its secondary N-substituted derivatives, N-(4-pyridylmethyl)-di(2-picolyl)amine (2), N-(4-carboxymethyl-benzyl)-di(2-picolyl)amine (3), N-(4-carboxybenzyl)-di(2-picolyl)amine (4), N-(1-naphthylmethyl)-di(2-picolyl)amine (5), N-(9-anthracenylmethyl)-di(2-picolyl)amine (6), 1,4-bis[di(2-picolyl)aminomethyl]benzene (7), 1,3-bis[di(2-picolyl)aminomethyl]benzene (8) and 2,4,6-tris[di(2-picolyl)amino]triazine (9) with Ni(II) and/or Zn(II) nitrate has resulted in the isolation of [Ni(1)(NO3)2], [Ni(2)(NO3)2], [Ni(3)(NO3)2], [Ni(4)(NO3)2]·CH3CN, [Ni(5)(NO3)2], [Ni(6)(NO3)2], [Ni2(7)(NO3)4], [Ni2(8)(NO3)4], [Ni3(9)(NO3)6]·3H2O, [Zn(3)(NO3)2]·0.5CH3OH, [Zn(5)(NO3)2], [Zn(6)(NO3)2], [Zn(8)(NO3)2] and [Zn2(9)(NO3)4]·0.5H2O. X-ray structures of [Ni(4)(NO3)2]·CH3CN, [Ni(6)(NO3)2] and [Zn(5)(NO3)2] have been obtained. Both nickel complexes exhibit related distorted octahedral coordination geometries in which 4 and 6 are tridentate and bound meridionally via their respective N3-donor sets, with the remaining coordination positions in each complex occupied by a monodentate and a bidentate nitrato ligand. For [Ni(4)(NO3)2]·CH3CN, intramolecular hydrogen bond interactions are present between the carboxylic OH group on one complex and the oxygen of a monodentate nitrate on an adjacent complex such that the complexes are linked in chains which are in turn crosslinked by intermolecular offset π-π stacking between pyridyl rings in adjacent chains. In the case of [Ni(6)(NO3)2], two weak CH?O hydrogen bonds are present between the axial methylene hydrogen atoms on one complex and the oxygen of a monodentate nitrate ligand on a second unit such that four hydrogen bonds link pairs of complexes; in addition, an extensive series of π-π stacking interactions link individual complex units throughout the crystal lattice. The X-ray structure of [Zn(5)(NO3)2] shows that the metal centre once again has a distorted six-coordinated geometry, with the N3-donor set of N-(1-naphthylmethyl)-di(2-picolyl)amine (5) coordinating in a meridional fashion and the remaining coordination positions occupied by a monodentate and a bidentate nitrato ligand. The crystal lattice is stabilized by weak intermolecular interactions between oxygens on the bound nitrato ligands and aromatic CH hydrogens on adjacent complexes; intermolecular π-π stacking between aromatic rings is also present.  相似文献   

10.
Reduction of [NMe4]2[ReBr5(NO)] (1) with zinc in acetonitrile leads to the known trisacetonitrile compound [ReBr2(CH3CN)3(NO)] (2). Attempts to turn 2 into a dihydrogen or a hydride complex applying direct reaction with H2 or with H2 and a base were unsuccessful. Complex 2 could be transformed into [ReBr(BF4)mer-(CH3CN)3(NO)] (2a) with AgBF4 in acetonitrile and was used as a starting material in a ligand exchange reaction with the water soluble phosphine 1,3,5-triaza-7-phosphadamantane (PTA) to obtain the complex [ReBr2(NO)(PTA)3] (3). When the reduction of 1 with zinc was carried out in the presence of PTA in acetonitrile, the disubstituted complex [ReBr2(CH3CN)(NO)(PTA)2] (4) was formed. The olefin-coordinated rhenium complexes [ReBr2(NO)(CH2CH2)(PTA)2] (5a) and [ReBr2(NO)(PhCHCH2)(PTA)2] (5b) were obtained from the reaction of 4 with the corresponding olefins. Complex 4 reacts further with NaHBEt3 in THF to give the dihydride [ReH2(THF)(NO)(PTA)2] (6). In the presence of ethylene 6 is transformed into the ethyl hydride complex [ReH(CH2CH3)(η2-C2H4)(NO)(PTA)2] (7). Complexes 6 showed catalytic activity in the hydrogenation of olefins.  相似文献   

11.
Deprotonation of the phosphane-borane adduct rac/meso-(HP(BH3)(Ph)CH2)2 (2) with KH provides facile access to the bidentate phosphanylborohydride rac/meso-K2[(P(BH3)(Ph)CH2)2] (3). Treatment of 3 with two equivalents of [CpFe(CO)2I] gives the dinuclear complex rac/meso-[(CpFe(CO)2)2-μ-(P(BH3)(Ph)CH2)2] (4). Single crystals of the pure diastereomers meso-2, meso-3(thf)4, and rac-4 have been grown from toluene/pentane, diethyl ether/thf, and benzene/pentane, respectively. The molecular structures of all three compounds have been determined by X-ray crystallography.  相似文献   

12.
Terminal alkynes (HCCR) (R=COOMe, CH2OH) insert into the metal-carbyne bond of the diiron complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCMe)(Cp)2][SO3CF3] (R=Xyl, 1a; CH2Ph, 1b; Me, 1c; Xyl=2,6-Me2C6H3), affording the corresponding μ-vinyliminium complexes [Fe2{μ-σ:η3-C(R)CHCN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Xyl, R=COOMe, 2; R=CH2Ph, R=COOMe, 3; R=Me, R=COOMe, 4; R=Xyl, R=CH2OH, 5; R=Me, R=CH2OH, 6). The insertion is regiospecific and C-C bond formation selectively occurs between the carbyne carbon and the CH moiety of the alkyne. Disubstituted alkynes (RCCR) also insert into the metal-carbyne bond leading to the formation of [Fe2{μ-σ:η3-C(R)C(R)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Me, R=Xyl, 8; R=Et, R=Xyl, 9; R=COOMe, R=Xyl, 10; R=COOMe, R=CH2Ph, 11; R=COOMe, R=Me, 12). Complexes 2, 3, 5, 8, 9 and 11, in which the iminium nitrogen is unsymmetrically substituted, give rise to E and/or Z isomers. When iminium substituents are Me and Xyl, the NMR and structural investigations (X-ray structure analysis of 2 and 8) indicate that complexes obtained from terminal alkynes preferentially adopt the E configuration, whereas those derived from internal alkynes are exclusively Z. In complexes 8 and 9, trans and cis isomers have been observed, by NMR spectroscopy, and the structures of trans-8 and cis-8 have been determined by X-ray diffraction studies. Trans to cis isomerization occurs upon heating in THF at reflux temperature. In contrast to the case of HCCR, the insertion of 2-hexyne is not regiospecific: both [Fe2{μ-σ:η3-C(CH2CH2CH3)C(Me)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Xyl, 13; R=Me, 15) and [Fe2{μ-σ:η3-C(Me)C(CH2CH2CH3)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Xyl, 14, R=Me, 16) are obtained and these compounds are present in solution as a mixture of cis and trans isomers, with predominance of the former.  相似文献   

13.
The tripodal N,N,O ligands 3,3-bis(3,5-dimethylpyrazol-1-yl)propionic acid (Hbdmpzp) (1) and 3,3-bis(pyrazol-1-yl)propionic acid (Hbpzp) (2) form the “missing link” between the well-known bis(pyrazol-1-yl)acetic acids and related ligands with a longer “carboxylate arm”. To illustrate the reactivity of this ligand, manganese and rhenium complexes bearing the ligand bdmpzp are reported. The complexes are compared to related compounds bearing other tripod ligands such as bis(3,5-dimethylpyrazol-1-yl)acetate (bdmpza) and 3,3-bis(1-methylimidazol-2-yl)propionate (bmip). Spectroscopic and structural data are used as a basis for comparison, as well as DFT calculations. Both ligands 1 and 2 and the complexes fac-[Mn(bdmpzp)(CO)3] (3) and fac-[Re(bdmpzp)(CO)3] (4) were characterised by X-ray crystallography.  相似文献   

14.
[RhH(CO)(PPh3)2] (1) reacts with Et3N·3HF to give the fluoro compound [RhF(CO)(PPh3)2] (2). In a comparable reaction [RhF(PEt3)3] (5) has been obtained from [RhH(PEt3)3] (3) or [RhH(PEt3)4] (4) with substoichiometric amounts of Et3N·3HF in THF. If the latter reaction is carried out in benzene, the complexes 5, cis-mer-[Rh(H)2F(PEt3)3] (6) and cis-fac-[Rh(H)2F(PEt3)3] (7) are obtained. Treatment of 5 with HCl in ether effects the generation of [RhCl(PEt3)3] (8) and the bifluoride compound [Rh(FHF)(PEt3)3] (9), which can be converted into 5 in the presence of Et3N and Cs2CO3. Treatment of 5 with HSiR2Ph (R=Ph, Me) leads to the formation of 3 and the rhodium(III) silyl complexes fac-[Rh(H)2(SiR2Ph)(PEt3)3] (10: R=Ph, 11: R=Me).  相似文献   

15.
Cationic methyl complex of rhodium(III), trans-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] (1) is prepared by interaction of trans-[Rh(Acac)(PPh3)2(CH3)I] with AgBPh4 in acetonitrile. Cationic methyl complexes of rhodium(III), cis-[Rh(Acac)(PPh3)2 (CH3)(CH3CN)][BPh4] (2) and cis-[Rh(BA)(PPh3)2(CH3)(CH3CN)][BPh4] (3) (Acac, BA are acetylacetonate and benzoylacetonate, respectively), are obtained by CH3I oxidative addition to rhodium(I) complexes [Rh(Acac)(PPh3)2] and [Rh(BA)(PPh3)2] in acetonitrile in the presence of NaBPh4. Complexes 2 and 3 react readily with NH3 at room temperature to form cis-[Rh(Acac)(PPh3)2(CH3)(NH3)][BPh4] (4) and cis-[Rh(BA)(PPh3)2(CH3)(NH3)][BPh4] (5), respectively. Complexes 1-5 were characterized by elemental analysis, 1H and 31P{1H} NMR spectra. Complexes 1, 2, 3 and 4 were characterized by X-ray diffraction analysis. Complexes 2 and 3 in solutions (CH2Cl2, CHCl3) are presented as mixtures of cis-(PPh3)2 isomers involved into a fluxional process. Complex 2 on heating in acetonitrile is converted into trans-isomer 1. In parallel with that isomerization, reductive elimination of methyl group with formation of [CH3PPh3][BPh4] takes place. Replacement of CH3CN in complexes 1 and 2 by anion I yields in both cases the neutral complex trans-[Rh(Acac)(PPh3)2(CH3)I]. Strong trans influence of CH3 ligand manifests itself in the elongation (in solid) and labilization (in solution) of rhodium-acetonitrile nitrogen bond.  相似文献   

16.
New Mo(II) complexes with 2,2′-dipyridylamine (L1), [Mo(CH3CN)(η3-C3H5)(CO)2(L1)]OTf (C1a) and [{MoBr(η3-C3H5)(CO)2(L1)}2(4,4′-bipy)](PF6)2 (C1b), with {[bis(2-pyridyl)amino]carbonyl}ferrocene (L2), [MoBr(η3-C3H5)(CO)2(L2)] (C2), and with the new ligand N,N-bis(ferrocenecarbonyl)-2-aminopyridine (L3), [MoBr(η3-C3H5)(CO)2(L3)] (C3), were prepared and characterized by FTIR and 1H and 13C NMR spectroscopy. C1a, C1b, L3, and C2 were also structurally characterized by single crystal X-ray diffraction. The Mo(II) coordination sphere in all complexes features the facial arrangement of allyl and carbonyl ligands, with the axial isomer present in C1a and C2, and the equatorial in the binuclear C1b. In both C1a and C1b complexes, the L1 ligand is bonded to Mo(II) through the nitrogen atoms and the NH group is involved in hydrogen bonds. The X-ray single crystal structure of C2 shows that L2 is coordinated in a κ2-N,N-bidentate chelating fashion. Complex C3 was characterized as [MoBr(η3-C3H5)(CO)2(L3)] with L3 acting as a κ2-N,O-bidentate ligand, based on the spectroscopic data, complemented by DFT calculations.The electrochemical behavior of the monoferrocenyl and diferrocenyl ligands L2 and L3 has been studied together with that of their Mo(II) complexes C2 and C3. As much as possible, the nature of the different redox changes has been confirmed by spectrophotometric measurements. The nature of the frontier orbitals, namely the localization of the HOMO in Mo for both in C2 and C3, was determined by DFT studies.  相似文献   

17.
Cationic methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(Py)][BPh4] (1) as a single isomer with Py in the trans to PPh3 position, is formed upon the reaction of cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] with pyridine in methylene chloride solution.Complex 1 was characterized by elemental analysis and by 31P{1H} and 1H NMR spectra.Cationic pentacoordinate acetyl complexes, trans-[Rh(Acac)(PPh3)2(COCH3)][BPh4] (2) and trans-[Rh(BA)(PPh3)2(COCH3)][BPh4] (3), are prepared by action of carbon monoxide on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] and cis-[Rh(BA)(PPh3)2(CH3)(CH3CN)][BPh4], respectively, in methylene chloride solutions.Complexes 2 and 3 were characterized by elemental analysis and by IR, 31P{1H}, 13C{1H} and 1H NMR. According to NMR data, 2 and 3 in solution are non-fluxional trigonal bipyramids with β-diketonate and acetyl ligands in the equatorial plane and axial phosphines.In solutions, 2 and 3 gradually isomerize into octahedral methyl carbonyl complexes trans-[Rh(Acac)(PPh3)2(CO)(CH3)][BPh4] (4) and trans-[Rh(BA)(PPh3)2(CO)(CH3)][BPh4] (5), respectively.Complexes 4 and 5 were characterized by IR, 31P{1H}, 13C{1H} and 1H NMR, without isolation.Upon the action of PPh3 on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] and cis-[Rh(BA)(PPh3)2(CH3)(CH3CN)] [BPh4], reductive elimination of the methyl ligand as a phosphonium salt, [CH3PPh3][BPh4], occurs to give square planar rhodium(I) complexes [Rh(Acac)(PPh3)2] and[Rh(BA)(PPh3)2], respectively. The reaction products were identified in the reaction mixtures by 31P{1H} and 1H NMR.  相似文献   

18.
The extended structures of Ag-complexes of the azine based ligands phenyl-2-pyridyl ketone azine (L1) and di-2-pyridyl ketone azine (L2) are reported, and focus is made on the investigation of the influence of the anion and supramolecular interactions on the self-assembly. Using AgNO3, AgClO4 and CF3COOAg salts as starting materials for both ligands in acetonitrile, we observed the formation of the dinuclear complexes [Ag2(L1)2](NO3)2 (1a), [Ag2(L1)2](ClO4)2 (1b), from L1, the tetranuclear complexes [Ag4(L2)2 (NO3)(CH3CN)2](NO3)3 (2a), [Ag4(L2)2(CF3COO)3CH3CN](CF3COO) (2b) and the linear chain polynuclear complex {[Ag3(L2)2] (ClO4)3}n (3) from L2. The X-ray structures show that the molecular geometry depends on the choice of anion. The silver centers have distorted tetrahedral coordination geometry in all the complexes. Weak hydrogen bonding and other interactions result in 2-D and 3-D networks in these complexes.  相似文献   

19.
The molecular structure of 7-acetamido-2-methyl-quinoline-5,8-dione has been determined and the reactivity of 7-acetamido-2-methyl-quinoline-5,8-dione (1) and 6-acetamido-2-methyl-quinoline-5,8-dione (2) towards Re(CO)5Cl has been examined. Two novel tricarbonyl rhenium complexes, fac-[Re(CO)3(7-acetamido-2-methyl-quinoline-5,8-dione)Cl]·CHCl3 (3·CHCl3) and fac-[Re(CO)3(6-acetamido-2-methyl-quinoline-5,8-dione)Cl]2·CHCl3 (4·CHCl3), have been synthesized and characterized spectroscopically and structurally. The electronic spectrum of 3 was investigated at the TDDFT level employing B3LYP functional in combination with LANL2DZ.  相似文献   

20.
The new ferrocenylmethylphosphines PH(CH2Fc)2 (1) [Fc = Fe(η5-C5H5)(η5-C5H4)] and P(CH2Fc)3 (2) and the phosphonium salt [P(CH2Fc)3(CH2OH)]I (3) were synthesised from P(CH2OH)3 and [FcCH2NMe3]I. [P(CH2Fc)(CH2OH)3]Cl (4) was obtained from P(CH2Fc)(CH2OH)2, CH2O and HCl. The new phosphines and phosphonium salts were fully characterised by NMR and IR spectroscopy and MS. [Mo(CO)6] reacts with 1 to give [Mo(CO)5{PH(CH2Fc)2}] (5) in high yield, but attempts to employ 2 as a ligand failed. The reaction of [P(CH2Fc)3(CH2OH)]I (3) and [PH(CH2Fc)3]I (obtained in situ from 3 and Na2S2O5) with [WI2(CO)3(NCMe)2] gave the complex salts [P(CH2Fc)3(CH2OH)][WI3(CO)4] (6) and [PH(CH2Fc)3][WI3(CO)4] (7), respectively. [P(CH2Fc)4]I (8) was synthesized from PH2CH2Fc and [FcCH2NMe3]I. Crystal structures were obtained for 1, 3-8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号