首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two novel polynuclear complexes with methanoate anions and 3-hydroxypyridine ligands [Cu(μ-HCO2)2(3-pyOH)]n (1) and [Cu2(μ-HCO2)2(μ-3-pyOH)2(3-pyOH)2(HCO2)2]n (2), respectively, were synthesized and characterized. The central copper atom in 1 is surrounded by four methanoates and a 3-pyOH molecule, forming a square-pyramidal CuO3NO chromophore. All the methanoates are bidentate and serve as bridges between the adjacent copper ions via syn-anti and anti–anti coordination. The basal square coordination axes are formed by O(syn), N(3-pyOH) (1.974(2), 2.016(2) Å) and O(anti), O(anti) (1.945(2), 1.960(2) Å), while the third O(anti) (2.247(2) Å) is on the top of the pyramid. A ferromagnetic transition with an exchange constant 2J/kB = 9.2 cm−1 is found for 1 below 20 K. This interaction probably takes place through two syn-anti methanoates extended in a chain through the 2D structure. On the other hand, two monoatomic Cu–O–Cu intra-dinuclear asymmetric (1.986(2), 2.415(2) Å) bridges of two methanoates in [Cu2(HCO2)4(3-pyOH)4] (2) are present. An elongated distorted octahedral coordination sphere around each copper(II) atom is completed by an additional monodentate terminal methanoate (1.975(2) Å), two N-coordinated 3-pyOH (2.005(2), 2.002(2) Å) and the third weakly O-coordinated 3-pyOH (2.732(2) Å). Although a shorter Cu?Cu distance is noticed in 2 than in 1 (4.690(1) Å 1, 3.442(1) Å 2), much weaker ferromagnetism is found in 2.  相似文献   

2.
The complex Cu2(μ-dppb)2(μ-Cl)2 has been synthesized from the reaction of CuCl, dppb and (n-Bu)4NCl. The crystal belongs to the triclinic with space group P1. The unit cell parameters are: a=9.939(4)?, b=10.083(6)?, c=14.104(5)?, α=76.46(3)°, β=71.02(2)°, γ=70.87(5)°. The single crystal X-ray diffraction analysis reveals that it has a bi-ring structure with a symmetry center at the middle of two Copper atoms. The outer ring is a 14-membered ring of Cu-dppb-Cu-dppb, and the inner ring is a 4-membered ring composed of two Cl- and two Cu(Ⅰ). Investigation of third-order optical nonlinearity shows that it exhibits considerable nonlinear absorptive and self-defocusing effect with α2=1.75×10-13m·W-1 and n2=3.19×10-18m2·W-1. CCDC: 193113.  相似文献   

3.
4.
A new heteronuclear germanium barium complex with D-tartaric acid [Ba(H2O)4][Ge2(μ-Tart)2(μ-OH)2]·5H2O (I) (H4Tart is tartaric acid) was synthesized. The identity of compound I and its com- position were determined by elemental analysis and X-ray diffraction. The thermal stability of the compound was studied; the coordination centers of the ligand were found from IR spectroscopy. The structure of I was determined by X-ray crystallography. Crystals I are tetragonal: a = 8.5033(2) ?, c = 30.9393(11) ?, V = 2237.10(11) ?3, Z = 4, space group P41, R1 = 0.0301 based on 4215 reflections with I > 2σ(I). In crystals I, neutral [Ge2(μ-Tart)2] dimers are linked in pairs by double hydroxyl bridges to form {[Ge2(μ-Tart)2(μ-OH)2]2−} polymeric chains. Hydrated Ba2+ cations and crystal water molecules are in between the anionic chains. Polymeric complex anions, hydrated barium cations, and H2O molecules are bound by a system of hydrogen bonds to form a framework.  相似文献   

5.
A new polymer azido-bridged copper(II) complex [Cu4(En)21,1-N3)41,1,1-N3)21,3-N3)2] n (I) (En = ethylenediamine) has been synthesized and crystallography characterized. Complex I shows one-dimensional coordination polymeric structure based on a tetranuclear cluster unit [Cu4(En)21,1-N3)41,1,1-N3)21,3-N3)2], in which the azido ions display three different bridging modes.  相似文献   

6.
The title dimanganese complexes react with NO (5% in N2) at room temperature to give as major products the corresponding hexanitrosyl derivatives [Mn2(NO)6(μ-L2)] in moderate yields, and they react rapidly with NO2 to give the corresponding hydride derivatives [Mn2(μ-H)(μ-NO2)(CO)6(μ-L2)], these having a nitrite ligand bridging the dimetal centre through the N and O atoms. The dppm-bridged dihydride also reacts selectively at 273 K with (PPN)NO2 to give first the nitro derivative (PPN)[Mn2(μ-H)(H)(NO2)(CO)6(μ-dppm)], which then transforms into the nitrosyl complex (PPN)[Mn2(μ-CO)(CO)5(NO)(μ-dppm)] at room temperature or above (dppm = Ph2PCH2PPh2; PPN+ = [N(PPh3)2]+). The latter anion reacts with (NH4)PF6 to give the hydride-bridged nitrosyl complex [Mn2(μ-H)(μ-NO)(CO)6(μ-dppm)] and with [AuCl(PPh3)] to give the trinuclear cluster [AuMn2(μ-NO)(CO)6(μ-dppm)(PPh3)] (Mn-Au = ca. 2.68 Å; Mn-Mn = 2.879(2) Å). Both products are derived from the addition of the added electrophile at the intermetallic bond and rearrangement of the nitrosyl ligand into a bridging position. In contrast, methylation of the anion with CF3SO3Me takes place at the nitrosyl ligand to yield the unstable methoxylimide derivative [Mn2(μ-NOMe)(CO)6(μ-dppm)]. Analogous reactions at the nitrosyl ligand take place upon the addition of HBF4·OEt2 to the nitrosyl-bridged hydrides [Mn2(μ-H)(μ-NO)(CO)n(μ-dppm)m] (n = 6, m = 1; n = 4, m = 2) to give the corresponding hydroxylimide derivatives [Mn2(μ-H)(μ-NOH)(CO)n(μ-dppm)m]BF4, which were also thermally unstable and could not be isolated nor fully characterized.  相似文献   

7.
The synthesis and spectroscopic properties of a Na complex with ligand 3-aminopyrazine-2-carboxylic acid were described. The resulting complex was characterized by elemental analysis, IR, UV-Vis, NMR spectroscopy and single crystal X-ray diffraction method. The title compound crystallizes in the triclinic system with space group . The crystalline structure of this compound consists of supramolecular architectures involving strong intramolecular N—H…O in pyrazine molecules and intermolecular O—H…N, O—H…O, and N—H…N hydrogen bonds between substituted pyrazine and water molecules.  相似文献   

8.
Reaction of silver(I) halides with PPh3 in acetonitrile and then with pyridine-2-thione (pySH) chloroform (1:1:1 molar ratio) has yielded sulfur bridged dimers of general formula, [Ag2X2(μ-S-pySH)2(PPh3)2] (X = Cl, 1, Br, 2). Both these complexes have been characterized using analytical data, NMR spectroscopy and single crystal X-crystallography. The central Ag2S2 cores form parallelograms with unequal Ag–S bond distances (2.5832(8), 2.7208(11) Å) in 1 and (2.6306(4), 2.6950(7) Å) in 2, respectively. The Ag?Ag contacts of compounds 1 and 2 are 3.8425(8) and 3.8211(4) Å, respectively. The angles around Ag (in the range 87.19(2)–121.71(2)° in 1 and 87.81(2)–121.53(2)° in 2) reveal highly distorted tetrahedral geometry. There are inter dimer π–π stacking interactions between pyridyl rings (inter ring distances of 3.498 and 3.510 Å in complexes 1 and 2, respectively). The solution state 31P NMR spectroscopy has shown the existence of both monomers and dimers. The studies reveal relatively weaker intramolecular –NH?Cl hydrogen bonding in case of AgCl vis-à-vis that in CuCl which favored both a monomer and a dimer with AgCl, and only a monomer with CuCl.  相似文献   

9.
Reactions of [(dtc)2Mo2(S)2(μ-S)2] with one or two equivalents of CuBr in CH2Cl2 afforded two new heterobimetallic sulfide clusters, [(dtc)2Mo23-S)(μ-S)3(CuBr)] (1) and [(dtc)2Mo23-S)4(CuBr)2] (2). Both compounds were characterized by elemental analysis, IR, UV-vis and X-ray analysis. Compound 1 contains a butterfly-shaped Mo2S4Cu core in which one CuBr unit is coordinated by one bridging S and two terminal S atoms of the [(dtc)2Mo2(S)2(μ-S)2] moiety. In the structure of 2, one [(dtc)2Mo2(S)2(μ-S)2] moiety and two CuBr units are held together by six Cu-μ3-S bonds, forming a cubane-like Mo2S4Cu2 core.  相似文献   

10.
Oxo/hydoxo zirconium(IV) complex of the general formula [Zr63-O)43-OH)4(OOCCH2tBu)92-OH)3]2 has been isolated, when Zr(OiPr)4 reacted with a 2-fold excess of 3,3-dimethylbutyric acid. Single crystal X-ray diffraction data, collected at 103 and 153 K, showed that the studied compound crystallizes in hexagonal system (P63/m (no. 176)). Structure consists of dimers composed of [Zr63-O)43-OH)4(OOCCH2tBu)9] sub-units, linked by six μ2-OH bridges. Infrared spectroscopic studies proved the presence of hydroxo groups in the structure of studied clusters and formation of different types of oxo/hydroxo bridges. The application of variable temperature infrared spectroscopy and differential scanning calorimetry revealed that the structure of this complex undergoes the phase transitions at 143–183 and 203–293 K. Comparison of spectral and crystallographic data suggests that these phase transitions might be related to changes in the strength of Zr–O bonds of μ2-OH bridges linking complex sub-units, and change in symmetry of the crystal lattice (from hexagonal to trigonal). Analysis of thermogravimetric data showed that decomposition of [Zr63-O)43-OH)4(OOCCH2tBu)92-OH)3]2 proceeds with complete conversion to ZrO2 (monoclinic form) between 603 and 803 K.  相似文献   

11.
A convenient synthesis and the characterization of six new electronically and coordinatively unsaturated complexes of the formula [Ru2(CO)4(μ-H)(μ-PtBu2)(μ-L2)] (2b-g) (RuRu) is described exhibiting a close relation to the known [Ru2(CO)4(μ-H)(μ-PtBu2)(μ-dppm)] (2a). The complexes 2b-g were obtained in a kind of one-pot synthesis starting from [Ru3(CO)12] and PtBu2H in the first step followed by the reaction with the bidentate bridging ligand in the second step. The method was developed for the following bridging ligands (μ-L2): dmpm (2b, dmpm = Me2PCH2PMe2), dcypm (2c, dcypm = Cy2PCH2PCy2), dppen (2d, dppen = Ph2PC(=CH2)PPh2), dpppha (2e, dpppha = Ph2PN(Ph)PPh2), dpppra (2f, dpppra = Ph2PN(Pr)PPh2), and dppbza (2g, dppbza = Ph2PN(CH2Ph)PPh2). The molecular structures of all new complexes 2bg were determined by X-ray diffraction.  相似文献   

12.
四核铁配合物[Fe4(NTB)42-O)24-Suc)](ClO4)6与DNA具有较强的结合作用,结合常数kb达(5.9±0.4)×105 L·mol-1。该多核铁配合物由水解途径促进DNA断裂,在酸性及低离子浓度条件下的促进作用较为显著。动力学分析表明DNA水解没有明显的序列选择性,质粒DNA从超螺旋转变为切口形式符合饱和酶动力学规律,饱和速率常数ksat=0.014 min-1。  相似文献   

13.
The product of the thermal reaction between cobalt acetate hydrate and benzoic acid reacts with a triethylamine excess to form the trinuclear complex Co3(μ-OOCPh)4(μ,η2-OOCPh)2[OC(Ph)OHNEt3]2, and its reaction with 3,5-dimethylpyrazole yields the mononuclear complex Co(Hdmpz)2(OOCPh)2. The compound structures are discussed on the basis of X-ray crystallographic data.  相似文献   

14.
Reaction of P2Ph4 with the diyne-diol complex [{Co2(CO)6}2(μ-η2:μ-η2-HOCH2CCCCCH2OH)] in toluene at 65 °C gives [{Co2(μ-P2Ph4)(CO)4}{Co2(CO)6}(μ-η2:μ-η2-HOCH2CCCCCH2OH)] (1). Thermolysis of 1 at 95 °C leads to [{Co2(CO)5}2(μ-P2Ph4)(μ-η2:μ-η2-HOCH2CCCCCH2OH)](2) and (μ2-PPh2)(μ2-CO)(CO)7] (3). The structures of 1-3 have been established by X-ray crystallography. In 1, a pseudoequatorial P2Ph4 ligand bridges the cobalt-cobalt bond of a Co2(CC)(CO)4 unit. By contrast, in isomeric 2, a pseudoaxial P2Ph4 ligand spans two Co2(CC)(CO)5 units, a new coordination mode for [{Co2(CO)5L}2(μ-η2:μ-η2-diyne)] complexes. Complex 3 arises from dehydration-cyclocarbonylation of the diyne-diol in 1 to give a 2(5H)-furanone, a process that has not been previously reported. Reaction of HOCH2CCCCCH2OH with [Co2(μ-PPh2)2(CO)6] at 80 °C in toluene gave [Co3(μ-PPh2)3(CO)6], [Co2(CO)6(μ-η2-HOCH2CCCCCH2OH)] and [Co2{μ-η4-PPh2C(CCCH2OH)C(CH2OH)CO}(μ-PPh2)(CO)4] (4). The regiochemistry of 4 was confirmed by X-ray crystallography.  相似文献   

15.
Reaction of the metalloligand [Pt2(μ-S)2(PPh3)4] with 0.5 mol equivalents of durene-1,4-bis(mercuric acetate) [AcOHgC6Me4HgOAc] in methanol gives the polynuclear complex [{Pt2(μ-S)2(PPh3)4}2(μ-1,4-C6Me4Hg2)]2+, isolated as its and salts. Positive-ion ESI mass spectra indicate that [{Pt2(μ-S)2(PPh3)4}2(μ-1,4-C6Me4Hg2)]2+ undergoes fragmentation by successive loss of PPh3 ligands, while the ESI mass spectrum of the salt showed additional ions [Pt2(μ-S)2(PPh3)4(HgC6Me4HgPh)]+ and [Pt2(μ-S)2(PPh3)4HgPh]+ as a result of phenyl transfer from to Hg. A single-crystal X-ray structure determination on [{Pt2(μ-S)2(PPh3)4}2(μ-1,4-C6Me4Hg2)](BPh4)2 shows that the cation crystallises on a centre of symmetry, with structural features that are comparable to those of the previously characterised complex [Pt2(μ-S)2(PPh3)4HgPh]BPh4.  相似文献   

16.
A phosphido-bridged unsymmetrical diiron complex (η5-C5Me5)Fe2(CO)4(μ-CO)(μ-PPh2) (1) was synthesized by a new convenient method; photo-dissociation of a CO ligand from (η5-C5Me5)Fe2(CO)6(μ-PPh2) (2) that was prepared by the reaction of Li[Fe(CO)4PPh2] with (η5-C5Me5)Fe(CO)2I. The reactivity of 1 toward various alkynes was studied. The reaction of 1 with tBuCCH gave a 1:1 mixture of two isomeric complexes (η5-C5Me5)Fe2(CO)3(μ-PPh2)[μ-CHC(tBu)C(O)] (3) containing a ketoalkenyl ligand. The reactions of 1 with other terminal alkynes RCCH (R=H, CO2Me, Ph) afforded complexes incorporating one or two molecules of alkynes and a carbonyl group. The principal products were dinuclear complexes bridged by a new phosphinoketoalkenyl ligand, (η5-C5Me5)Fe2(CO)3(μ-CO)[μ-CR1CR2C(O)PPh2] (4a: R1=H, R2=H; 4b: R1=CO2Me, R2=H; 4c: R1=H, R2=Ph). In the cases of alkynes RCCH (R=H, CO2Me), dinuclear complexes having a new ligand composed of two molecules of alkynes, a carbonyl group, and a phosphido group; i.e. (η5-C5Me5)Fe2(CO)3[μ-CRCHCHCRC(O)PPh2] (5a: R=H; 5b: R=CO2Me), were also obtained. In all cases, mononuclear complexes, (η5-C5Me5)Fe(CO)[CR1CR2C(O)PPh2] (6a: R1=H, R2=H; 6b: R1=H, R2=CO2Me; 6c: R1=H, R2=Ph) were isolated in low yields. The structures of 1, 4c, 5b, and 6a were confirmed by X-ray crystallography. The detailed structures of the products and plausible reaction mechanisms are discussed.  相似文献   

17.
A reaction of Cp′Mo(CO)3Cl(Cp′ = MeC5H4) with (PPh3)2Pt(C2Ph2) gave the heterometallic cluster Cp′Mo(μ-CO)2(C2Ph2)Pt2(PPh3)2(CO)Cl (I) as the sole product. According to X-ray diffraction data, complex I contains single Pt-Mo bonds (2.7962(5) and 2.7699(5) ?) but no Pt-Pt bond (Pt…Pt 2.9746(3) ?). The coordinated diphenylacetylene molecule forms two Pt-C σ-bonds (2.054(6) and 2.083(5) ?) and a π-bond to the Mo atom (Mo-C 2.265(6) and 2.272(5) ?; C≡C 1.387(8) ?). Original Russian Text ? A.A. Pasynskii, I.V. Skabitskii, Yu.V. Torubaev, S.S. Shapovalo, 2009, published in Koordinatsionnaya Khimiya, 2009, Vol. 35, No. 6, pp. 410–413.  相似文献   

18.
A new binuclear copper(Ⅱ) complex, [Cu2(phen)2(H2O)22-C2O4)](NO3)2, has been synthesized and characterized by elemental analysis, IR and UV-Vis spectrum. Its crystal structure was determined by single crystal X-ray diffraction techniques. Crystal data: monoclinic, space group P21/c, a=0.712 21(8) nm, b=1.170 93(14) nm, c=1.783 7(2) nm, β=111.828(2)°, and V=1.380 8(3) nm3, Dc=1.769 Mg·m-3, Z=2, F(000)=744, R1=0.025 4, wR2=0.069 5, Gof=1.077, Δρ=328~-455 e·nm-3. The complex is packed by one centrosymmetry binuclear copper(Ⅱ) unit, oxalate dianion and NO3- anion. In the molecule structure of the title complex, two Cu(Ⅱ) ions are bridged by oxalate dianion and each Cu(Ⅱ) ions coordinates with two nitrogen atoms from 1,10-phenanthroline ligand and one oxygen atom from water to form a five-coordinate distorted square-pyramidal configuration. The hydrogen bonds are observed between coordinated water molecules and NO3- anions. The analysis of the crystal structure indicates that the complex has a two-dimensional stacking network structure, which is formed by intramolecular hydrogen bonds, intermolecular hydrogen bonds and stacking effect of aromatic ring. CCDC: 255345.  相似文献   

19.
The dimanganese hydride complexes [Mn2(μ-H)2(CO)6(μ-L2)] [L2 = (EtO)2POP(OEt)2 (tedip), Ph2PCH2PPh2 (dppm)] react with primary and secondary silanes H2SiPhR (R = Ph, Me, H) to give the corresponding derivatives [Mn2(μ-H2SiPhR)(CO)6(μ-L2)] having a silane molecule displaying a relatively unusual μ-κ22 coordination mode (averaged values are ca. Mn-H = 1.59 Å, H-Si = 1.69 Å and Mn-Si = 2.381 Å, when R = Ph and L2 = tedip). These complexes display in solution cis and/or trans arrangement of the bridging silane relative to the diphosphorus ligands (and facial and/or meridional arrangements of the corresponding carbonyl ligands), depending on the bridging groups. The novel unsaturated dihydride [Mn2(μ-H)2(CO)6(μ-dmpm)] (dmpm = Me2PCH2PMe2) has been prepared through the reaction of [Mn2(μ-Cl)2(μ-dmpm)(CO)6] and 5 equiv of Li[BH2Me2] in tetrahydrofuran followed by addition of water. The dihydride complexes [Mn2(μ-H)2(CO)6(μ-L2)] (L2 = tedip, dppm, dmpm) react with HSnPh3 to give different mixtures of products strongly dependent on the particular reaction conditions. We have thus been able to isolate and characterize five new types of dimanganese-tin derivatives: [Mn2(μ-SnPh2)2(CO)6(μ-L2)], [Mn2(μ-H)(μ-Ph2SnO(H)SnPh2)(CO)6(μ-L2)] (average values are Mn-Sn = 2.54 Å, Sn-O = 2.11 Å, when L2 = tedip), [Mn2(μ-H)(μ-κ12-HSnPh2)(CO)6(μ-L2)], [Mn2(μ-H)(μ-κ11-O(H)SnPh2)(CO)6(μ-L2)], and [Mn2(μ-H)(SnPh3)(CO)7(μ-L2)] (Mn-Mn = 3.237(1) Å, Mn-Sn = 2.642(1) Å, when L2 = dppm).  相似文献   

20.

Abstract  

Thermolysis of cis-Fe(CO)4(SiCl3)2 results in the formation of the novel compound Fe2(CO)62-SiCl2)3, which was characterized by single crystal X-ray diffraction. Density functional theory calculations were carried out to elucidate possible reaction steps leading to the formation of Fe2(CO)6(SiCl2)3, including CO dissociation and chlorine abstraction by a SiCl3 radical generated from homolytic Fe–Si bond cleavage involving a singlet–triplet intersystem crossing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号