首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acidic hydrolysis of N-acyl 1-methyl- and 1-phenyl-3-amino-1,2-dicarba-closo-dodecaboranes has been studied. It has been shown that acidic hydrolysis of diastereomeric amides of 1-methyl-3-amino-1,2-dicarba-closo-dodecaborane results in the partial racemization of the target 3-amino-1-methylcarborane. Under the similar conditions, the hydrolysis of N-acyl-3-amino-1-phenyl-1,2-dicarba-closo-dodecaboranes resulted in amide bond cleavage accompanied by simultaneous deboronation with the removal of boron atom at position 6 of carborane cage and formation of 7,8-dicarba-nido-undecaborane derivative according to 11B and 1H NMR spectroscopy.  相似文献   

2.
A new approach to synthesis of hetero-substituted derivatives of cobalt bis(1,2-dicarbollide) was proposed. The approach involves stepwise introduction of functional groups into different dicarbollide ligands. Halogenation of the monohydroxy derivative [8-OH-3,3??-Co-(1,2-C2B9H10)(1??,2??-C2B9H11)]? gave the corresponding halogen hydroxy derivatives [8-OH-8??-X-3,3??-Co(1,2-C2B9H10)2]? (X = Cl, Br, and I). Reactions of 8,8??-??-iodonium-3-commo-cobaltbis(1,2-dicarba-closo-dodecaborate) [8,8??-I-3,3??-Co(1,2-C2B9H10)2] with chloroform and 1,2-dibromoethane yielded the mixed halides [8-Y-8??-I-3,3??-Co(1,2-C2B9H10)2]? (Y = Cl and Br).  相似文献   

3.
New hetero-substituted charge-compensated cobalt bis(1,2-dicarbollide) derivatives were synthesized by the reaction of 8,8′-μ-iodo-3-commo-3-cobalta-bis(1,2-dicarba-closo-dodecaborane) [8,8′-μ-I-3,3′-Co(1,2-C2B9H10)2] with 1,4-thioxane, pyridine N-oxide, and tetrahydropyran. X-ray diffraction studies showed that the 8′-iodo-8-(pyridiniumoxy)eucosahydro-1,1′,2,2′-tetracarba-3-commo-cobalta-closo-tricosaborate molecule has the gauche-conformation (the substituents are turned with respect to each other by 69.2°). The positive charge is predominantly localized on the N(Py) atom.  相似文献   

4.
The use of 1,2‐diselenolato‐1,2‐dicarba‐closo‐dodecaborane(12) dianions [1,2‐(1,2‐C2B10H10)Se2]2? prepared in situ as the dilithium salt may lead to irreproducible results. This is shown by the straightforward synthesis of silanes using the purified and isolated dianions, in contrast with previous less successful attempts. Thus, the reactions of the dianions with dichlorosilanes afford the five‐membered diselenasila cycles containing the SiMe2 or the SiPh2 units, and with 1,2‐dichloro‐tetramethyldisilane the six‐membered cycle containing the Si2Me4 unit. The latter was studied by X‐ray diffraction, and all products were characterized by multinuclear magnetic resonance (1H, 13C, 29Si, 77Se NMR) in solution. Novel isotope effects were detected in 13C and 77Se NMR spectra. Exchange reactions of the five‐ and six‐membered diselanasila cycles with chlorosilanes were studied. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Coordination Properties of Carbaboranylchlorophosphines: Synthesis and Molecular Structure of cis-rac -Molybdenumtetracarbonyl{1,2-bis(chlorophenylphosphino)-1,2-dicarba-closo-dodecaborane(12)} Rac-1,2-bis(chlorophenylphosphino)-1,2-dicarba-closo-dodecaborane(12) ( 1 ) reacts with [Mo(CO)4(NBD)] (NBD = norbornadiene) after several hours at 50–55 °C to yield cis-rac-[Mo(CO)4{1,2-(PPhCl)2C2B10H10}] ( 2 ). 2 was characterised spectroscopically (1H, 13C, 11B and 31P NMR) and by crystal structure determination.  相似文献   

6.
Cesium and tetraethylammonium salts of the ethynyl functionalized monocarba-closo-dodecaborate anions [12-HCC-closo-1-CB11H11] and [7,12-(HCC)2-closo-1-CB11H10] were obtained by desilylation of [Et4N][12-Me3SiCC-closo-1-CB11H11] and [Et4N][7,12-(Me3SiCC)2-closo-1-CB11H10], respectively. Their thermal properties were examined by differential scanning calorimetry. The compounds were characterized by multi-NMR, IR, and Raman spectroscopy, (−)-MALDI mass spectrometry, and elemental analysis. Single-crystals of Cs[12-HCC-closo-1-CB11H11] and [Et4N][7,12-(HCC)2-closo-1-CB11H10] were studied by X-ray diffraction. The discussion of the spectroscopic and structural properties is supported by data derived from theoretical calculations using density functional theory as well as perturbation theory.  相似文献   

7.
We report two methods for preparing N-arylammonio, N-pyridyl and N-arylamino dodecaborates: heating of the tetrabutylammonium salt of dodecahydro-closo-dodecaborate(2-) with aryl and pyridyl amines, or nucleophilic attack of [closo-B12H11NH2]2− on a strongly deactivated aromatic system. With aryl amines we obtained [1-closo-B12H11N(R1)2C6H5] (R1 = H, CH3). With 4-(dimethylamino)pyridine, [1-closo-(B12H11NC5H4)-4-N(CH3)2], with a bond between the boron and the pyridinium nitrogen, was obtained. A presumable mechanism for this kind of reactions is reported. By nucleophilic substitution, two products, [1-closo-(B12H11NHC6H3)-3,4-(CN)2]2− and [1-closo-(B12H11NHC6H2)-2-(NO2)-4,5-(CN)2]2−, were formed with 4-nitrophthalonitrile and 1-chloro-2,4-dinitrobenzene gave [1-closo-(B12H11NHC6H3)-2,4-(NO2)2]2−. For [1-closo-B12H11N(CH3)2C6H5] and [1-closo-(B12H11NHC6H3)-2,4-(NO2)2]2− single crystal X-ray structures were obtained.  相似文献   

8.
A reaction of complexes CoCl2(dppe) (dppe is the 1,2-bis(diphenylphosphino)ethane) or CoCl2(dppp) (dppp is the 1,3-bis(diphenylphosphino)propane) with [K][7,8-nido-C2B9H12] upon reflux in benzene led to the mixed ligand closo-cobaltacarboranes [3,3-(Ph2P(CH2) n PPh2)-3-Cl-closo-3,1,2-CoIIIC2B9H11] (n = 2 and 3, respectively) in moderate yields (34 and 16%). The structure of the 18-electron complexes in solution and the solid state was studied by NMR and IR spectroscopy, the structure in the case of the closo-complex with dppe-ligand was confirmed by X-ray crystallography.  相似文献   

9.
The first primary 2‐aminocarba‐closo‐dodecaborates [1‐R‐2‐H2N‐closo‐CB11H10]? (R=H ( 1 ), Ph ( 2 )) have been synthesized by insertion reactions of (Me3Si)2NBCl2 into the trianions [7‐R‐7‐nido‐CB10H10]3?. The difunctionalized species [1,2‐(H2N)2closo‐CB11H10] ( 3 ) and 1‐CyHN‐2‐H3N‐closo‐CB11H10 (H‐ 4 ) have been prepared analogously from (Me3Si)2NBCl2 and 7‐H3N‐7‐nido‐CB10H12. In addition, the preparation of [Et4N][1‐H2N‐2‐Ph‐closo‐CB11H10] ([Et4N]‐ 5 ) starting from PhBCl2 and 7‐H3N‐7‐nido‐CB10H12 is described. Methylation of the [1‐Ph‐2‐H2N‐closo‐CB11H10]? ion ( 2 ) to produce 1‐Ph‐2‐Me3N‐closo‐CB11H10 ( 6 ) is reported. The crystal structures of [Et4N]‐ 2 , [Et4N]‐ 5 , and 6 were determined and the geometric parameters were compared to theoretical values derived from DFT and ab initio calculations. All new compounds were studied by NMR, IR, and Raman spectroscopy, MALDI mass spectrometry, and elemental analysis. The discussion of the experimental NMR chemical shifts and of selected vibrational band positions is supported by theoretical data. The thermal properties were investigated by differential scanning calorimetry (DSC). The pKa values of 2‐H3N‐closo‐CB11H11 (H‐ 1 ), 1‐H3N‐closo‐CB11H10 (H‐ 7 ), and 1,2‐(H3N)2closo‐CB11H10 (H2‐ 3 ) were determined by potentiometric titration and by NMR studies. The experimental results are compared to theoretical data (DFT and ab initio). The basicities of the aminocarba‐closo‐dodecaborates agree well with the spectroscopic and structural properties.  相似文献   

10.
The 8,9′-[closo-{3-Co(η5-C5H5)-1,2-C2B9H10}]2 (1) species, in which two large closo-CoC2B9 sub-clusters are connected by a B-B bond, is unexpectedly obtained from the reaction of closo-[3-Co(η5-C5H5)-1,2-C2B9H11] with sulfur in the presence of aluminium chloride under reflux conditions. The solid state conformation of 1 seems to be the result of a pair of intramolecular C-H?H-B dihydrogen bonds between the protonic H atoms of the C5H5 fragment of a sub-cluster and the hydridic H atoms of the C2B9H11 fragment in the other sub-cluster in 1.  相似文献   

11.
Three nickel(II) carborane complexes, [Ni2(μ-Cl)2{7,8-(PPh2)2-7,8-C2B9H10}2] (1), [Ni{7-(OPPh2)-8-(PPh2)-7,8-C2B9H10}{7,8-(PPh2)2-7,8-C2B9H10}] (2) and [NiBr2{1,2-(PPh2)2-1,2-C2B10H10}] · CH2Cl2 (3), have been synthesized by the reactions of 1,2-bis(diphenylphosphino)-1,2-dicarba-closo-dodecaborane with NiCl2 · 6H2O or NiBr2 · 6H2O in ethanol under different conditions, respectively. For complex 1, it could also be obtained under the solvothermal condition. All the three complexes were characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopy and X-ray structure determination. Single crystal analysis shows that the molecular symmetry of complex 1 is centrosymmetric, containing two same structure units - Ni(7,8-(PPh2)2-7,8-C2B9H10) linked by two bridged-Cl atoms. The central square plane formed by the [Ni2Cl2] unit is almost parallel to the two side NiPP planes. For complex 2, the coordination environment of the Ni atom is a seriously distorted square-planar, in which two positions come from the chelating diphosphine ligand [7,8-(PPh2)2-7,8-C2B9H10] degraded from the closo species, while the other two are occupied by an unsymmetrical chelating phosphine oxide ligand [7-(OPPh2)-8-(PPh2)-7,8-C2B9H10]. As for complex 3, the geometry at the Ni atom is a slightly distorted square-planar. The closo carborane diphosphine ligand 1,2-(PPh2)2-1,2-C2B10H10 was coordinated bidentately to the metal ion through the two phosphorus atoms, and the two Br atoms are at cis position which can fulfill the four coordination mode of the metal.  相似文献   

12.
The reaction of [nido-7-SB10H12] with [RhCl(PPh3)3] in the presence of N,N,NN′-tetramethylnaphthalene-1,8-diamine (tmnd) in CH2Cl2 gives twelve-vertex [2,2-(PPh3)2-2-H-closo-2,1-RhSB10H10] (1) and eleven-vertex [8,8-(PPh3)2-nido-8,7-RhSB9H10] (2), as major products, plus the dimeric species [{(PPh3)-closo-RhSB10H10}2] (3) as a minor product. Reaction of 1 with PMe2Ph in CH2Cl2 results in phosphine exchange and hydride substitution, affording the chloro analogue of 1, [2,2-(PMe2Ph)2-2-Cl-closo-2,1-RhSB10H10] (4). By contrast, reaction between [IrCl(PPh3)3] and [nido-7-SB10H12] in CH2Cl2 with tmnd affords only one product, twelve-vertex [2,2-(PPh3)2-2-H-closo-2,1-IrSB10H10] (5). [RhCl25-C5Me5)]2 with [nido-7-SB10H12] under the same conditions gives twelve-vertex [2-(η5-C5Me5)-closo-2,1-RhSB10H10] (6). All the compounds are characterised by NMR spectroscopy, and by mass spectrometry, and the molecular structure of [2,2-(PMe2Ph)2-2-Cl-closo-2,1-RhSB10H10] (4) was established by single-crystal X-ray diffraction analysis. This last rhodathiaborane 4 is fluxional in solution through a process that involves a reversible partial rotation of the {RhCl(PMe2Ph)2} unit above the {SB4} pentagonal face of the {SB10H10} fragment.  相似文献   

13.
A series of polychalcogenotrimethylsilane complexes Ar(CH2ESiMe3)n, (Ar=aryl; E=S, Se; n=2, 3, and 4) can be prepared from the corresponding polyorganobromide and M[ESiMe3] (M=Na, Li). These represent the first examples of the incorporation of such a large number of reactive ?ESiMe3 moieties onto an organic molecular framework. They are shown to be convenient reagents for the preparation of the polyferrocenylseleno‐ and thioesters from ferrocenoyl chloride. The synthesis, structures, and spectroscopic properties of the new silyl chalcogen complexes 1,4‐(Me3SiECH2)2(C6Me4) (E=S, 1 ; E=Se, 2 ), 1,3,5‐(Me3SiECH2)3(C6Me3) (E=S, 3 ; E=Se, 4 ) and 1,2,4,5‐(Me3SiECH2)4(C6H2) (E=S, 5 ; E=Se, 6 ) and the polyferrocenyl chalcogenoesters [1,4‐{FcC(O)ECH2}2(C6Me4)] (E=S, 7 ; E=Se, 8 ), [1,3,5‐{FcC(O)ECH2}3(C6Me3)] (E=S, 9 ; E=Se, 10 ) and [1,2,4,5‐{FcC(O)ECH2}4(C6H2)] (E=S, 11 illustrated; E=Se, 12 ) are reported. The new polysilylated reagents and polyferrocenyl chalcogenoesters have been characterized by multinuclear NMR spectroscopy (1H, 13C, 77Se), electrospray ionization mass spectrometry and, for complexes 1 , 2 , 3 , 4 , 7 , 8 , and 11 , single‐crystal X‐ray diffraction. The cyclic voltammograms of complexes 7 – 11 are presented.  相似文献   

14.
1-(2-Nitrophenyl)-1,2-dicarba-closo-dodecaborane(12) shows C-H?O intramolecular hydrogen bonding in chloroform. The reaction of isomeric 1-(nitrophenyl)-1,2-dicarba-closo-dodecaborane(12)s and of 1-(4-fluorophenyl)-1,2-dicarba-closo-dodecaborane(12) with wet DMSO causes the removal of 3-B or 6-B, leading cleanly to nido-carboranes. The rank order of rates of these deboronations is consistent with developing negative charge in the rate-determining step.  相似文献   

15.
A novel 1,2-dicarba-closo-dodecaborane-lactose conjugate 4c, when dissolved in water or methanol, is subject to unexpected deboronation in neutral conditions leading to the formation of the corresponding nido-counterpart (5) as detected by 11B NMR spectroscopy. After heating the aqueous solution of the conjugate 4c at 60 °C for 17 h pure 1,2-dicarba-nido-undecaborane-lactose conjugate 5 was obtained.  相似文献   

16.
Large silver(I) clusters stabilized by the dianionic carba-closo-dodecaboranylethynyl ligand were obtained. Crystallization of polymeric {Ag2(12-C≡C-closo-1-CB11H11)}n from dimethyl sulfoxide afforded [Ag14(12-C≡C-closo-1-CB11H11)7(DMSO)12] · DMSO that contained an AgI10 cage augmented by four AgI ions. Crystals of [Ag16(12-C≡C-closo-1-CB11H11)8(THF)12] · 2THF were obtained from anhydrous THF and {Ag2(12-C≡C-closo-1-CB11H11)}n. In the presence of moisture the similar but water-containing complex [Ag16(12-C≡C-closo-1-CB11H11)8(THF)12(H2O)2] · 2.5THF was identified. Both silver(I) clusters are composed of a central octahedral AgI6 unit and ten further silver(I) ions bonded via argentophilic interactions. [Ag14(12-C≡C-closo-1-CB11H11)7(DMSO)12] · DMSO and [Ag16(12-C≡C-closo-1-CB11H11)8(THF)12] · 2THF were characterized by elemental analysis and vibrational (IR and Raman) as well as NMR spectroscopy. In addition, the crystal structures of [Ag25(12-C≡C-closo-1-CB11H11)12(CH3CN)13.5(OH)] · 0.5CH3CN and [Ag25(12-C≡C-closo-1-CB11H11)12{(CH3)2CO}13.5(H2O)Cl] · 15(CH3)2CO were determined. Both compounds contain AgI14 rhombic dodecahedrons augmented by eleven silver(I) ions. A hydroxide or a chloride template ion is present in the center of the rhombic dodecahedron, respectively.  相似文献   

17.
The treatment of 1,2-, 1,7- and 1,12-carbaborane lithiated isomers with [3,3′-Co-8-(CH2CH2O)2-(1,2-C2B9H10)-(1′,2′-C2B9H11)] (1) at molar ratios 1:1 or 1:2 at room temperature in THF leads generally to the formation of a series of orange double-cluster mono and dianions. These were characterized by NMR and MS methods as [1′′-X-1′′,2′′-closo-C2B10H11], [2]; [1′′-X-1′′,7′′-closo-C2B10H11], [3] and [1′′-X-1′′,12′′-closo-C2B10H11], [4] for the monoanions, whereas [1′′,2′′-X2-1′′,2′′-closo-C2B10H10]2−, [2]2−; [1′′,7′′-X2-1′′,7′′-closo-C2B10H10]2−, [3]2−; and [1′′,12′′-X2-1′′,12′′-closo-C2B10H10]2−, [4]2− for the dianions (where X = 3,3′-Co-8-(CH2CH2O)2-(1,2-C2B9H10)-1′,2′-(C2B9H11)). Moreover, these borane-cage subunits can be easily modified via attaching variable substituents onto cage carbon and boron vertices, which makes these compounds structurally flexible potential candidates for BNCT of cancer and HIV-PR inhibition.  相似文献   

18.
The enantiomers of the highly lipophilic α-amino acid m-carboranyl-alanine [3-(1,7-dicarba-closo-dodecaborane(12)-1-yl)-2-aminopropanoic acid], a carborane containing analogue of phenylalanine, have been synthesised via hydroxyamination of the N-acyl derivative formed from 3-(m-carboranyl)propionic acid [3-(1,7-dicarba-closo-dodeca-borane(12)-1-yl)-2-propanoic acid] and Oppolzer's camphor sultam. The enantiomeric excess of both enantiomers of the amino acid was >98%. (S)-Configuration was assigned to the (+)-enantiomer (CH3OH, 589 nm).  相似文献   

19.
The [4+2] cycloaddition reactions of 3,6-disubstituted 1,2,4,5-tetrazines with 9-allyl-1,7-,9-allyl-1,2-dicarba-closo-dodecaboranes and 1-allyl-2-isopropyl-1,2-dicarba-closo-dodecab-orane have been studied. The pyridazines containing carborane cage have been synthesized for the first time.  相似文献   

20.
The 16-electron Co, Rh and Ir half-sandwich complexes of Cp#M[E2C2(B10H10)] and Cp#M(E2S2C6H4) (M = Co, Rh, Ir, Ru; E = S, Se) containing chelating 1,2-dicarba-closo-dodecaborane-1,2-dichalcogenolato ligands and benzenedithiolato ligands are promising precursors to build multimetallic clusters by reactions with low oxidation state late transition metal reagents. Such reactions lead to successful constructions of M–M bonds between iridium, rhodium, cobalt, ruthenium, and other late transition metals. Most of these complexes have been characterized by X-ray single crystal determinations and some have been studied by computational methods. Such theoretical studies reveal the covalent bonding nature of those multinuclear complexes. Some of these clusters have been found to have interesting nonlinear optical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号