首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five mononuclear complexes of manganese(II) of a group of the general formula, [MnL(NCS)2] where the Schiff base L = N,N′-bis[(pyridin-2-yl)ethylidene]ethane-1,2-diamine (L1), (1); N,N′-bis[(pyridin-2-yl)benzylidene]ethane-1,2-diamine (L2), (2); N,N′-bis[(pyridin-2-yl)methylidene]propane-1,2-diamine (L3), (3); N,N′-bis[(pyridin-2-yl)ethylidene]propane-1,2-diamine (L4), (4) and N,N′-bis[(pyridin-2-yl)benzylidene]propane-1,2-diamine (L5), (5) have been prepared. The syntheses have been achieved by reacting manganese chloride with the corresponding tetradentate Schiff bases in presence of thiocyanate in the molar ratio of 1:1:2. The complexes have been characterized by IR spectroscopy, elemental analysis and other physicochemical studies, including crystal structure determination of 1, 2 and 4. Structural studies reveal that the complexes 1, 2 and 4 adopt highly distorted octahedral geometry. The antibacterial activity of all the complexes and their respective Schiff bases has been tested against Gram(+) and Gram(−) bacteria.  相似文献   

2.
The present work aims at the synthesis of various novel silatranes bearing substituted urea functionality. Nucleophilic addition of various amines (morpholine, aniline, ethylenediamine and 3-aminopropyltriethoxysilane) to 3-isocyanatopropyltriethoxysilane resulted in the four triethoxysilanes; N-[3-(triethoxysilyl)propyl]morpholine-4-carboxylic acid amide (1), 1-[3-(triethoxysilyl)propyl]-3-phenylurea (2), 1,2-bis{N′-[3-(triethoxysilyl)propyl]ureido}-ethane (3) and N-[3-(triethoxysilyl)propyl]-N′-[3-(triethoxysilyl)propyl]urea (4), respectively. In the presence of a base the resulting silanes undergo transesterification reaction with triethanolamine, thus forming the corresponding silatranes, N-(3-silatranylpropyl)morpholine-4-carboxylic acid amide (5), 1-(3-silatranylpropyl)-3-phenylurea (6), 1,2-Bis[N′-(3-silatranylpropyl)ureido]-ethane (7) and N-(3-silatranylpropyl)-N′-(3-silatranylpropyl)urea (8), respectively. Among these are four novel compounds (5-8), which were characterized by elemental analysis, IR, multinuclear (1H, 13C and 29Si) NMR and mass spectroscopy. Structures of compounds 5 and 6 were deduced by X-ray crystallography. Single crystal X-ray studies revealed distorted trigonal bipyramidal coordination about Si in 5 and 6 with Si-N bond distance of 2.121(1) Å and 2.189(2) Å, respectively.  相似文献   

3.
Although reaction of guaiazulene (1a) with 1,2-diphenyl-1,2-ethanediol (2a) in methanol in the presence of hydrochloric acid at 60 °C for 3 h under aerobic conditions gives no product, reaction of 1a with 1,2-bis(4-methoxyphenyl)-1,2-ethanediol (2b) under the same reaction conditions as 2a gives a new ethylene derivative, 2-(3-guaiazulenyl)-1,1-bis(4-methoxyphenyl)ethylene (3), in 97% yield. Similarly, reaction of methyl azulene-1-carboxylate (1b) with 2b under the same reaction conditions as 1a gives no product; however, reactions of 1-chloroazulene (1c) and the parent azulene (1d) with 2b under the same reaction conditions as 1a give 2-[3-(1-chloroazulenyl)]-1,1-bis(4-methoxyphenyl)ethylene (4) (81% yield) and 2-azulenyl-1,1-bis(4-methoxyphenyl)ethylene (5) (15% yield), respectively. Along with the above reactions, reactions of 1a with 1,2-bis(4-hydroxyphenyl)-1,2-ethanediol (2c) and 1-[4-(dimethylamino)phenyl]-2-phenyl-1,2-ethanediol (2d) under the same reaction conditions as 2b give 2-(3-guaiazulenyl)-1,1-bis(4-hydroxyphenyl)ethylene (6) (73% yield) and (Z)-2-[4-(dimethylamino)phenyl]-1-(3-guaiazulenyl)-1-phenylethylene (7) (17% yield), respectively. Comparative studies of the above reaction products and their yields, crystal structures, spectroscopic and electrochemical properties are reported and, further, a plausible reaction pathway for the formation of the products 3-7 is described.  相似文献   

4.
The preparation of the N-heterocyclic carbene coordinated gallium complexes [GaH3(IXy)] (1), [GaH3(IDipp)] (2), [GaClH2(IMes)] (3) and [GaCl2H(IMes)] (4), where IXy = 1,3-bis(2,6-dimethylphenyl)imidazol-2-ylidene, IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene and IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene, are reported. All four complexes have been characterised by 1H, 13C NMR and IR spectroscopy and, for complexes 2, 3 and 4, single crystal X-ray structure determination. These compounds represent some of the most thermally stable molecular gallium hydrides known, with 4 being the most thermally stable gallium hydride reported (dec. 274 °C). These remarkable thermal stabilities translate to significant aerobic stability such that all four compounds may be handled in dry air without significant decomposition. Compounds 2, 3 and 4 exist as distorted tetrahedra in the solid state with gallium to carbene C-donor bonds that shorten with increasing Lewis acidity of the gallium centre. Compound 2 co-crystallizes with 1 equiv. of 2,6-diisopropylphenylaniline and exhibits several weak intermolecular bonding interactions in the solid-state.  相似文献   

5.
Reaction of azulene (1) with 1,2-bis[4-(dimethylamino)phenyl]-1,2-ethanediol (2) in a mixed solvent of methanol and acetonitrile in the presence of 36% hydrochloric acid at 60 °C for 3 h gives 2-(azulen-1-yl)-1,1-bis[4-(dimethylamino)phenyl]ethylene (3) (8% yield), 1-(azulen-1-yl)-(E)-1,2-bis[4-(dimethylamino)phenyl]ethylene (4) (28% yield), and 1,3-bis{2,2-bis[4-(dimethylamino)phenyl]ethenyl}azulene (5) (9% yield). Besides the above products, this reaction affords 1,1-di(azulen-1-yl)-2,2-bis[4-(dimethylamino)phenyl]ethane (6) (15% yield), a meso form (1R,2S)-1,2-di(azulen-1-yl)-1,2-bis[4-(dimethylamino)phenyl]ethane (7) (6% yield), and the two enantiomeric forms (1R,2R)- and (1S,2S)-1,2-di(azulen-1-yl)-1,2-bis[4-(dimethylamino)phenyl]ethanes (8) (6% yield). Furthermore, addition reaction of 3 with 1 under the same reaction conditions as the above provides 6, in 46% yield, which upon oxidation with DDQ (=2,3-dichloro-5,6-dicyano-1,4-benzoquinone) in dichloromethane at 25 °C for 24 h yields 1,1-di(azulen-1-yl)-2,2-bis[4-(dimethylamino)phenyl]ethylene (9) in 48% yield. Interestingly, reaction of 1,1-bis[4-(dimethylamino)phenyl]-2-(3-guaiazulenyl)ethylene (11) with 1 in a mixed solvent of methanol and acetonitrile in the presence of 36% hydrochloric acid at 60 °C for 3 h gives guaiazulene (10) and 3, owing to the replacement of a guaiazulen-3-yl group by an azulen-1-yl group, in 91 and 46% yields together with 5 (19% yield) and 6 (13% yield). Similarly, reactions of 2-(3-guaiazulenyl)-1,1-bis(4-methoxyphenyl)ethylene (12) and 1,1-bis{4-[2-(dimethylamino)ethoxy]phenyl}-2-(3-guaiazulenyl)ethylene (13) with 1 under the same reaction conditions as the above provide 10, 2-(azulen-1-yl)-1,1-bis(4-methoxyphenyl)ethylene (16), and 1,3-bis[2,2-bis(4-methoxyphenyl)ethenyl]azulene (17) (93, 34, and 19% yields) from 12 and 10 and 2-(azulen-1-yl)-1,1-bis{4-[2-(dimethylamino)ethoxy]phenyl}ethylene (18) (97 and 58% yields) from 13.  相似文献   

6.
Several new 1,1-disubstituted siloles containing substituents on the ring carbon atoms have been synthesized. The new siloles: 1,1-dihydrido-2,5-bis(trimethylsilyl)-3,4-diphenylsilole (5), 1,1-dihydrido-2,5-dimethyl-3,4-diphenylsilole (6), 1,1-dimethoxy-2,5-bis(trimethylsilyl)-3,4-diphenylsilole (7), 1,1-bis(4-methoxyphenyl)-2,5-bis(trimethylsilyl)-3,4-diphenylsilole (8), 1,1-dipropoxy-2,5-bis(trimethylsilyl)-3,4-diphenylsilole (9), and 1,1-dibromo-2,5-bis(trimethylsilyl)-3,4-diphenylsilole (13) were prepared from reactions originating from the previously reported, 1,1-bis(diethylamino)-2,5-bis(trimethylsilyl)-3,4-diphenylsilole (1) or 1,1-bis(diethylamino)-2,5-dimethyl-3,4-diphenylsilole (2). In addition, three other new organosilane byproducts were observed and isolated during the current study, bis(4-methoxyphenyl)bis(phenylethynyl)silane (11), bis(4-methoxyphenyl)di(propoxy)silane (12) and 1-bromo-4-bromodi(methoxy)silyl-1,4-bis(trimethylsilyl)-3,4-diphenyl-1,3-butadiene (14). Compounds 13 and 14 were characterized by X-ray crystallography and 14 is the first 1,1-dibromosilole whose solid state structure has been determined.  相似文献   

7.
Mg-promoted reductive coupling of aromatic carbonyl compounds (1) with chlorosilanes, such as trimethylsilyl chloride (TMSCl:2), 1,2-bis(chlorodimethylsilyl)ethane (3) and 1,5-dichlorohexamethyltrisiloxane (4), in N,N-dimethylformamide (DMF) at room temperature brought about selective and facile reductive formation of both of carbon-silicon and oxygen-silicon bonds to give the corresponding α-trimethylsilylalkyl trimethylsilyl ethers (5) and cyclic siloxanes (6), (7) in moderate to good yields, respectively. The present facile and selective coupling may be initiated through electron transfer from Mg metal to aromatic carbonyl compounds (1).  相似文献   

8.
The reactions of 1,2-bis(tetrazol-5-yl)benzene (1), 1,3-bis(tetrazol-5-yl)benzene (2), 1,4-bis(tetrazol-5-yl)benzene (3), 1,2-(Bu3SnN4C)2C6H4 (4), 1,3-(Bu3SnN4C)2C6H4 (5) and 1,4-(Bu3SnN4C)2C6H4 (6) with 1,2-dibromoethane were carried out by two different methods in order to synthesise pendant alkyl halide derivatives of the parent bis-tetrazoles. This lead to the formation of several alkyl halide derivatives, substituted at either N1 or N2 on the tetrazole ring, as well as the surprising formation of several vinyl derivatives. The crystal structures of both 1,2-[(2-vinyl)tetrazol-5-yl)]benzene (1-N,2-N′) (1b) and 1,3-bis[(2-bromoethyl)tetrazol-5-yl]benzene (2-N,2-N′) (5d) are discussed.  相似文献   

9.
Four photochromic dithienylethene compounds, 1,2-bis(2-methyl-5-naphthalene-3-thienyl)perfluorocyclopentene 1a, 1,2-bis[2-methyl-5(p-fluorophenyl)-3-thienyl]perfluorocyclopentene 2a, 1,2-bis[2-methyl-5(p-ethoxyphenyl)-3-thienyl]perfluorocyclopentene 3a, and 1,2-bis[2-methyl-5(p-N,N-dimethylaminophenyl)-3-thienyl]perfluorocyclopentene 4a were synthesized, and their optoelectronic properties, such as photochromism in solution as well as in poly-methylmethacrylate (PMMA) amorphous films, fluorescences and electrochemical properties were investigated in detail. These dithienylethenes have shown good photochromic behavior both in solution and in PMMA amorphous film. All of them exhibited relatively strong fluorescence and gave a bathochromic shift upon increasing concentration in THF. The irreversible anodic oxidation of 1a, 2a and 4a was observed by performing cyclic voltammetry experiments.  相似文献   

10.
Bis(silylamino)tin dichlorides 1 [X2SnCl2 with X=N(Me3Si)2 (a), N(9-BBN)SiMe3 (b), N(tBu)SiMe3 (c), and N(SiMe2CH2)2 (d)] were prepared from the reaction of two equivalents of the respective lithium amides (Li-a-d) with tin tetrachloride, SnCl4, or from the 1:1 reaction of the respective bis(amino)stannylene with SnCl4. The compounds 1 react with two equivalents of lithium alkynides LiCCR1 to give the di(1-alkynyl)-bis(silylamino)tin compounds X2Sn(CCR1)2, 2 (R1=Me), 3 (R1=tBu), and 4 (R1=SiMe3). Problems were encountered, mainly with LiCCtBu as well as with 1b, since side reactions also led to the formation of 1-alkynyl-bis(silylamino)tin chlorides 5-7 and tri(1-alkynyl)(silylamino)tin compounds 8 and 9. 1,1-Ethylboration of compounds 2-4 led to stannoles 10, 11, and in the case of propynides, also to 1,4-stannabora-2,5-cyclohexadiene derivatives 12. The molecular structure of the stannole 11b (R1=SiMe3) was determined by X-ray analysis. The reaction of 2a and d with triallylborane afforded novel heterocycles, the 1,3-stannabora-2-ethylidene-4-cyclopentenes 14. These reactions proceed via intermolecular 1,1-allylboration, followed by an intramolecular 1,2-allylboration to give 14, and a second intramolecular 1,2-allylboration leads to the bicyclic compounds 15.  相似文献   

11.
Reactions of the title ethylene derivatives, (E)-1,2-di(3-guaiazulenyl)ethylene (1) and 2-(3-guaiazulenyl)-1,1-bis(4-methoxyphenyl)ethylene (2), with a 2 M amount of TCNE in benzene at 25 °C for 24 h under argon give new cycloaddition compounds, 1,1,2,2,11,11,12,12-octacyano-3-(3-guaiazulenyl)-8-isopropyl-5,10-dimethyl-1,2,3,6,9,10a-hexahydro-6,9-ethanobenz[a]azulene (3) from 1 and 1,1,2,2,11,11,12,12-octacyano-8-isopropyl-3,3-bis(4-methoxyphenyl)-5,10-dimethyl-1,2,3,6,9,10a-hexahydro-6,9-ethanobenz[a]-azulene (4) from 2, respectively, in 66 and 87% isolated yields. Comparative studies on the above reactions as well as the spectroscopic properties of the unique products 3 and 4, possessing interesting molecular structures, are reported and, further, a plausible reaction pathway for the formation of these products is described.  相似文献   

12.
The synthesis and reactions of several α,β-unsaturated chloromethyl sulfones is presented, for example [(chloromethyl)sulfonyl]-1,3-propadiene (4), [(chloromethyl)sulfonyl]ethene (5), [(dichloromethyl)sulfonyl]ethene (6) and (E,Z)-1,2-bis[(chloromethyl)sulfonyl]ethene (7). These compounds serve as ‘prepackaged’ Ramberg-Bäcklund reagents, which following an appropriate first step, such as Diels-Alder addition, react with base giving Ramberg-Bäcklund products.  相似文献   

13.
Four mercury(II) thiocyanate–organic polymeric complexes, [Hg(μ-4,4-bipy)(SCN)2]n (1), [Hg(μ-bpa)(SCN)2]n (2), [Hg(μ-bpe)(SCN)2]n (3), [Hg(μ-bpp)(SCN)2]n (4) {4,4-bipy = 4,4′-bipyridine, bpa = 1,2-bis(4-pyridyl)ethane, bpe = 1,2-bis(4-pyridyl)ethene and bpp = 1,3-di(4-pyridyl)propane} were prepared from reactions of mercury(II) thiocyanate with four rigid and flexible organic nitrogen donor-based ligands under thermal gradient conditions, brunched tube method. All these compounds were structurally determined by X-ray single-crystal diffraction. The thermal stabilities of compounds 14 were studied by thermal gravimetric (TG) and differential thermal analyses (DTA). Solid state luminescent spectra of compounds 1 and 3 indicate intense fluorescent emissions at 430 and 468 nm, respectively.  相似文献   

14.
The autoxidation of a mixture of 1,2-disubstituted pyrazolidine-3,5-diones 1 and alkenes 2 in the presence of a catalytic amount of manganese(III) acetate dihydrate in air gave 4,4-bis(2-hydroperoxyalkyl)pyrazolidine-3,5-diones 3 in 75-96% yields. The structure of the bis(2-hydroperoxyethyl)pyrazolidine-3,5-dione 3 (R1=R2=Ph, R3=R4=4-FC6H4) has been corroborated by an X-ray single crystallographic analysis. On the other hand, the manganese(III) acetate oxidation of a mixture of 1 (R1=R2=Ph) and 2 (R3=R4=Ph) at elevated temperature gave 4,4-bis(2,2-diphenylethenyl)-1,2-diphenylpyrazolidine-3,5-dione (4) in good yield.  相似文献   

15.
Five-membered metallacyclic alkyne complexes of titanium and hafnium, 1,1-bis(cyclopentadienyl)-1-titanacyclopent-3-yne (2) and trans-1,1-bis(cyclopentadienyl)-2,5-trimethylsilyl-1-hafnacyclopent-3-yne (6), were synthesized and structurally characterized. The structural analysis of titanium complex 2 implied a larger contribution of an η4-π,π-coordinated structure. The hafnium compound 6 has a similar structure to the corresponding zirconium analogue (1a), although slight differences in the bond lengths and angles were observed. A novel 1-zirconacyclopent-3-yne complex, 1,1-bis(methylcyclopentadienyl)-2,5-bis(trimethylsilyl)-1-zirconacyclopent-3-yne (5), was also prepared and the structure of the trans-isomer was determined.  相似文献   

16.
The new metal-free (4) and metallophthalocyanines (5) carrying macrocyclic moieties linked ferrocenyl groups have been synthesized by direct cyclotetramerization of the pre-cursor, 12,13-dicyano-4,7-bis(ferrocenylmethyl)-2,3,4,5,6,7,8,9-octahydrocyclobenzo[k]-4,7-diaza-1,10-dithiacyclododecine (3) which has been prepared by the macrocyclization reaction of 1,2-bis(2-iodoethylmercapto)-4,5-dicyanobenzene (1) with N,N′-ethylenebis-(ferroceneylmethyl)amine (2), in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a strong organic base. Nickel (II) phthalocyanine (5) was synthesized by the reaction of metal-free phthalocyanine with anhydrous NiCl2 in dry quinoline. The target compound and its intermediates have been characterized by a combination of elemental analysis and 1H, 13C NMR, IR, UV-Vis and MS spectral data.  相似文献   

17.
Reaction of guaiazulene (1) with thiophene-2,5-dicarbaldehyde (2) in methanol in the presence of hexafluorophosphoric acid at 25 °C for 3 h gives as high as 90% isolated yield of the delocalized dicarbenium-ion compound, 2,5-thienylenebis(3-guaiazulenylmethylium) bis(hexafluorophosphate) (3). Similarly, reaction of 1 with furan-2,5-dicarbaldehyde (4) under the same conditions as the above reaction affords the corresponding dicarbenium-ion compound, 2,5-furylenebis(3-guaiazulenylmethylium) bis(hexafluorophosphate) (5), in 84% isolated yield. Along with a facile preparation and the spectroscopic and electrochemical properties of 3 and 5, comparative studies on the 1H and 13C NMR spectral and chemical properties of 3 and 5 with those of the delocalized mono- and dicarbenium-ion compounds [i.e., (3-guaiazulenyl)(2-thienyl)methylium hexafluorophosphate (7), (2-furyl)(3-guaiazulenyl)methylium hexafluorophosphate (9), α,α′-bis(3-guaiazulenylmethylium) bis(tetrafluoroborate) (10), 1,2-phenylenebis(3-guaiazulenylmethylium) bis(hexafluorophosphate) (11), and 1,4-phenylenebis(3-guaiazulenylmethylium) bis(tetrafluoroborate) (12)] are reported. Moreover, referring to the results of the X-ray crystallographic analyses of 7, 9, 11, and 12, the optimized 2,5-thienylenebis(3-guaiazulenylmethylium)- and 2,5-furylenebis(3-guaiazulenylmethylium)-ion structures for 3 and 5, calculated by a WinMOPAC (version 3.0) program using PM3 as a semiempirical Hamiltonian, are described.  相似文献   

18.
The reaction of mercury(II) halides with 1,2-bis(diphenylphosphino)ethane monoxide (dppeO) in 1:1 molar ratio yielded P,O-coordinated polymers having the empirical formula [HgX2(dppeO)]n [X = Cl (1), Br (2), I (3)]. In contrast, the reaction between the same reactants in a 1:2 molar ratio yielded the P, P-coordinated monomeric complexes, HgX2(dppeO)2[X = Cl (4), Br (5), I (6)]. The structures of 2, 3, 4 and 5 have been characterized crystallographically. The results indicate that the geometry around the mercury atom in each of these molecules is tetrahedral with considerable distortion. The 31P NMR spectra of the 1:1 complexes indicate the dissociation of the Hg–O bond in solution.  相似文献   

19.
A series of hetero-dinuclear CuII-ZnII complexes, [CuZnCl2L1] (1), [CuZnCl2L2] (2), [CuZnBr2L3] (3), [CuZnBr2L4(DMF)] (4), [CuZnCl2L4] (5), [CuZnCl2L5] (6), [CuZnCl2L3] (7) and [CuZnBr2L1] (8), where L1, L2, L3, L4 and L5 are the deprotonated forms of N,N′-bis(3-ethoxysalicylidene)-1,3-propanediamine (H2L1), N,N′-bis(2-hydroxynaphthylmethylidene)-1,3-propanediamine (H2L2), N,N′-bis(3-methoxysalicylidene)-1,3-propanediamine (H2L3), N,N′-bis(salicylidene)-1,3-propanediamine (H2L4) and N,N′-bis(salicylidene)-1,4-butanediamine (H2L5), respectively, have been synthesized and characterized by physico-chemical methods and single-crystal X-ray diffraction. The complexes were tested for their urease inhibitory activity. Complexes 1 and 8 show effective urease inhibitory activity with IC50 values of 2.2 and 10.7 μM. The molecular docking study of the complexes with the Helicobacter pylori urease was performed.  相似文献   

20.
The synthesis of tricyclic compounds on functionalized cyclam core is described. The addition of four methyl acrylate molecules and consecutive condensation of this derivative with ethylenediamine resulted in formation of 1,4,8,11-tetrakis(2-(N-(2-aminoethyl)carbamoyl)ethyl)-1,4,8,11-tetraazacyclotetradecane (3). Compound 3 was the substrate for further condensation with dialdehydes: iso-phthaldialdehyde and 2,6-pyridinedicarbaldehyde, resulting in spontaneous macrocycle ring closure to give tricyclic derivatives: 1,11:4,8-bis(benzene-1,3-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (4) in the reaction of 3 with iso-phthaldialdehyde and three isomers: 1,4:8,11-bis(pyridine-2,6-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (5A), 1,11:4,8-bis(pyridine-2,6-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (5B), and 1,8:4,11-bis(pyridine-2,6-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (5C) when 2,6-pyridinedicarbaldehyde was used. The compounds 4, 5B, and 5C were identified crystallographically. The isolated 5A converted in solution into the mixture of 5B and 5C as monitored by the 1H NMR spectroscopy. The tricycle 5 is able to accept two manganese(II) metal ions by reacting with manganese(II) dichloride with simultaneous diprotonation of 5. Structure of the resulting Mn2(5BH2)Cl6·(CH3OH)2(H2O)2 was determined crystallographically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号