首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 531 毫秒
1.
离轴非球面反射镜补偿检验的计算机辅助装调技术研究   总被引:1,自引:1,他引:1  
利用零补偿器实施离轴非球面元件面形的干涉检测中,为了实现反射镜的高准确度检测,对其干涉结果中的误差信息进行了分析.根据零补偿器的补偿原理,提出一种新的调整误差分离方法,建立了离轴非球面补偿检验的调整误差分离模型,并利用该模型对一块离轴非球面反射镜进行了仿真实验.调整前由调整误差引入的波像差为0.2332λRMS(λ=632.8nm),根据仿真结果调整后的波像差为0.0026λRMS,表明该方法具有较高的准确度,可有效提高检测效率.  相似文献   

2.
提出了利用计算全息图检测非旋转对称的"花瓣"形位相板.分析并推导了光线经过"花瓣"形相位板传播中的高阶像差的理论公式,并以此为指导进行了"花瓣形"相位板的检测系统的设计,给出了设计的结果.讨论了计算全息图衍射级次的分离以及计算全息图的二元化,给出了振幅型的计算全息图的图样.计算全息图的刻线最小间隔是20 μm,计算全息图的制作精度对检测结果的波前误差的影响仅仅为0.005λ.对检测系统作了详细的公差分析,结果表明所有调整公差对整个检测系统的影响和方根值为103.187 nm.  相似文献   

3.
许英朝  张新  周平 《光学学报》2008,28(5):971-975
作为零位干涉检测方法中非常有前途的一种方法.计算全息可以用于非旋转对称的非球面的检测.以三次相位板为例,阐述了利用计算全息图检测非旋转对称的非球面的基本原理.分析并推导了三次相位传播过程引入的高阶波像差的理论公式,给出了三次相位板的检测系统的没计结果.详细讨论了计算全息图衍射级次的分离以及计算全息图的二元化,给出了振幅型的计算全息图的图样.计算全息图的刻线最小问隔是40μm,计算全息图的制作精度对检测结果的波前误差的影响仅仅为0.005λ.对检测系统作了详细的公差分析,结果表明所有调整公差对整个检测系统的影响和方根值为83.954 nm.  相似文献   

4.
光栅拼接法是目前制作大尺寸平面衍射光栅的重要方法之一,而拼接误差是评价拼接光栅是否能够使用的重要指标之一。实时定量测量拼接误差,能够实现对拼接误差的自动闭环调整,通过实时指导拼接提高光栅拼接的精度。建立了衍射波前与光栅拼接误差关系的数学模型,分析了干涉仪测量光栅拼接误差的原理,用ZYGO干涉仪实现拼接光栅0级及-1级衍射波前的数字化定量提取,分析并计算了拼接误差波前,得到五维拼接误差的数值解。利用拼接光栅-2级的衍射波前验证五维拼接误差结果的准确性,实验结果表明由0级、-1级、-2级拼接波前计算的拼接误差具有较好的一致性,为利用波前检测光栅拼接误差并实现自动化闭环调整提供了理论指导。  相似文献   

5.
《光学学报》2011,(2):221-225
非球面光学元件检测中,获得准确的面形信息是实现元件确定性制造的关键因素之一.在无像差点法检测离轴非球面中,为了实现反射镜的高精度检测,对其干涉检测结果中的误差信息进行了分析.利用偏心光学系统的波像差分析方法,分析了在非球面检测系统中,被测镜的调整误差对系统波像差的影响,建立了调整误差分离的数学模型.利用该模型对离轴非球...  相似文献   

6.
用双计算全息图检测凹非球面   总被引:9,自引:3,他引:6  
谢意  陈强  伍凡  侯溪  张晶  吴高峰 《光学学报》2008,28(7):1313-1317
为实现对凹非球面的高精度检测,提出并设计了一种二元纯相位型双计算全息图.设计的双计算全息图由主全息和对准全息两部分组成,分别用于检测非球面和精确定位主全息.介绍了双计算全息图的工作原理及其设计方法,并给出了一个检测Φ140、F/2抛物面反射镜的双计算全息图设计实例,实验得到的均方根(RMS)误差为0.062λ.通过分析对准全息的误差,推导出主全息的条纹位置畸变误差,最后计算出其综合误差为0.06A.为验证实验结果的可靠性,将其与平面镜自准直检测结果(ERMS=0.062A)比较,结果二者吻合良好.  相似文献   

7.
朱硕  张晓辉 《光学学报》2013,(6):95-102
为进一步提高Ritchey-Common法的检测精度,分析了实验中Ritchey角精度对整体检测结果的影响。通过仿真模拟,分析并确定出最佳Ritchey角测试范围在20°~50°之间,此时面形误差检测结果精度可达0.01λ(λ=0.6328μm)。仿真过程中模拟Ritchey角存在误差时对检测结果的影响,当Ritchey角误差控制在±1°时,拟合结果与原始面形的残差降至0.0007λ,能够满足测试要求。针对Ritchey角测量存在误差的问题,利用测得系统光瞳面的图像压缩比例来计算Ritchey角大小,此方法的计算误差可控制在0.2°以内。实验中选择3个角度来检测,在数据处理时将测得数据两两组合进行解算。29.6°&47.8°组合拟合结果与Zygo干涉仪直接检测结果的残差的峰谷(PV)值为0.068λ、均方根(RMS)值为0.0105λ,证明Ritchey角的选择及其计算精度对检测整体精度具有一定影响。  相似文献   

8.
为了提高非球面光学元件的检测精度及效率,缩短调整环节的时间,分析了非球面干涉检测过程中被检非球面镜的调整误差对检测结果波前信息的影响,提出利用波前等高线图走势准确判断调整方向的调整方法。建立调整方向与被检镜失调量之间的关系,并利用光学设计软件Zemax仿真模拟检测光路,结合二次非球面镜的光学公差分析判断调整量的大小。基于该调整方法,利用Zygo激光干涉仪对口径为50 mm的双曲面进行检测,最终检测结果是RMS为0.014 ,实验表明该方法简单、可行。  相似文献   

9.
为了同时对长焦透镜的面形和焦距进行高精度检测,提出在Zygo干涉仪的球面光路中加入一个二元衍射元件作为检测件的计算全息法。 首先对计算全息法检测长焦透镜的面形和焦距进行了理论推导,并给出焦距误差公式。在Zemax中使用在平面基底上制作的二元衍射元件对一个长焦透镜的面形和焦距进行了模拟检测,其中对该长焦透镜面形的干涉检测PV值为0.0034λ,对焦距的检测精度为-0.11%。最后详细分析了两类误差对检测结果的影响,其中光学元件的位置误差影响不超过0.1λ;二元衍射元件的制造误差影响约0.01λ,在具体制造过程中,其径向位置误差和台阶误差可分别在2 μm和5 nm之内。在综合考虑各项误差的情况下,该方法的检测精度仍然可控制在2λ/25之内。  相似文献   

10.
通过对计算全息图检测非球面的误差进行分析,提出了一种用于计算全息图检测非球面过程中图案位置误差引入的波前误差的标定方法。该方法先设计检测过程中所需要的辅助波前和检测波前在计算全息基板上所对应的相位分布,再通过光场叠加的方式得到复合相位。辅助波前用于计算实际位置与设计位置的偏差,进而计算出位置畸变引起的检测误差,并将其从系统中消除。检测波前用于得到与非球面匹配的波前,进而对非球面面形进行检测,并提出了图案位置误差引入的非球面波前差的计算方法。为评估该方法的可行性,将复合相位所对应的计算全息图导入衍射计算软件中进行仿真,同时得到了平面、球面和非球面各个级次的衍射光斑,证明了该方法的正确性。  相似文献   

11.
主焦点式光学系统的光机结构设计与装调检测   总被引:1,自引:0,他引:1  
针对应用在极轴式望远镜中的主焦点式光学系统,从主镜的支撑设计与分析、主镜的装调检测、校正镜组件的设计装调和系统的装调检测等方面进行了深入的研究.充分应用了有限元法分析主镜的支撑、定心仪检测光轴的同轴度、平行光管检测系统像质等,得出了主焦点式光学系统的一般装调检测方法.装调后的主镜面形检测结果均方根值达到0.042 8λ,校正镜组的光轴同轴误差达到12.4″.对系统的像质评价采用能量集中度法,成像在靶面上的星点80%能力集中度在24 μm×24 μm范围以内,达到设计指标要求,说明系统结构设计合理,装调检测方法可行.该方法和思路可推广至其他主焦点式光学系统的装调检测工作.  相似文献   

12.
李小燕  付兴  王鹏  段学霆 《应用光学》2013,34(3):498-502
针对通过胶粘固定的口径为230 mm非球面反射镜的装调要求,选用无像差面型检测法,通过对3个关键过程,即底板与裸镜的粘接,镜框与底板的连接,光学定心加工的实验研究,提出使粘接应力及结构件传导应力变化量达到最小的微应力装校方法,并通过光学定心加工标定出非球面反射镜的光学中心。装调结果表明:对于口径为230 mm的非球面反射镜,微应力装调后面型精度0.02;光学中心偏心量5 m,分划板表面与光轴垂直度误差2.5。  相似文献   

13.
为了提高光学系统的成像质量,对离轴抛物面反射镜的面形准确度要求越来越高,这大大增加了反射镜的加工难度.本文基于波像差理论,分析了在离轴抛物面反射镜中调整量引入的波像差,提出通过适当调整离轴抛物面反射镜的位置补偿反射镜的面形误差,可以降低离轴反射镜的加工难度、缩短其加工周期、减少加工成本.并借助于ZEMAX软件对一块面形准确度低于λ/40 RMS (λ=632.8 nm)离轴抛物面反射镜进行仿真实验,根据理论计算的调整量调整反射镜的位置,得到了补偿后的离轴抛物面反射镜的面形误差小于λ/60 RMS,仿真结果表明在离轴抛物面反射镜中引入适当的调整量可以有效地补偿反射镜的面形误差.  相似文献   

14.
在平行光路中,光学系统的光学元件的误差或微量运动可抽象为绕定点的微量转动,其成像关系可归结为在微量转动下物像共轭关系的依次迭代,利用光学系统这种动态成像关系的思想,建立一个统一的光学调整及误差分析的数学模型。利用此模型分析光通信系统中分光系统的机械安装误差对系统的影响,建立每个反射镜的机械调整坐标,从理论上指导分光系统中每个反射镜的机械调整,最终使通信激光发射系统和精信标激光接收系统的光轴平行度达到5。  相似文献   

15.
拼接子镜系统计算机辅助装调研究   总被引:1,自引:1,他引:0  
姜震宇  李林  黄一帆  杜宝林 《光子学报》2009,38(7):1858-1861
为了提高拼接子镜系统的装调精确度,研究了拼接子镜系统的计算机辅助装调技术,分析了拼接子镜系统的计算机辅助装调模型,采用反向优化法编写程序求解系统失调量.以37项泽尼克系数作为评价函数.当粗调误差在0.7°以内时,完全可以精确求解失调量.结果表明,求解结果准确度高,符合实际装调要求.  相似文献   

16.
共轴三反光学系统是空间光学遥感器常用的设计形式,以“高分一号”遥感卫星高分辨率相机装调为例,对共轴三反系统计算机辅助装调技术进行了研究。提出以主镜光轴为装调基准,通过调整三镜控制系统视场和调整次镜控制系统像差的装调方法,分析了次镜和三镜的失调量与Zernike系数变化关系,由光学设计软件求得系统灵敏度矩阵,用于指导系统装调工作,提高了装调精度,缩短了装调周期。测试结果表明:光学系统各视场Zernike系数优于0.05λ,系统波相差RMS值优于0.06λ,系统通过在轨成像测试,图像清晰,层次丰富。  相似文献   

17.
利用离轴三反镜光学系统确定各镜的装调公差   总被引:2,自引:0,他引:2  
杨晓飞  韩昌元 《光学技术》2005,31(2):173-176
利用条纹泽尼克系数与赛德尔像差的关系,在三反镜光学系统的出瞳面上,用条纹泽尼克系数来表示系统的波像差。通过光学设计软件Zemax计算得到三反镜光学系统各镜的装调公差,以公差要求高的镜面作为装调基面,从而减少要调整的自由度。通过分析泽尼克(Zernike)系数在公差范围内的变化幅度来确定光学系统在出瞳面上各个像差的变化幅度,用该幅度的变化量来决定主次三镜各自由度在各个方向上的敏感度,最终确定各个自由度的优化调整级别。对一大口径无遮拦离轴三反镜光学系统进行了装调,在波长λ=632.8nm的条件下进行了检测。结果表明:整个光学系统全视场波前误差的均方根值RMS=0.108λ。  相似文献   

18.
大口径天文薄镜面磨制试验   总被引:3,自引:0,他引:3  
介绍了采用薄镜面主动支撑技术来加工大口径天文薄镜面的试验情况。试验镜为一弯月型球面反射镜.直径为Ф1035mm,镜面曲率半径为3220mm,径厚比约为40:1。在磨制过程中,有55个分离支撑点支撑存镜子背面。支撑点的位置与支撑力的大小通过有限元分析计算确定,其中3个为固定支撑点.另外52个为主动支撑点。每个支撑点位置设置了力促动器,调节力促动器加力的大小。可以主动改正镜面的低频误差。加工后最后达到的面形精度:λ=632.8nm,面形误差(RMS)小于等于λ/21.5,局部高频误差(RMS)小于等于λ/23。试验证明所采用的方法适合于大口径天文薄镜面的加工。  相似文献   

19.
李俊峰 《中国光学》2014,7(2):287-292
为了满足凸非球面反射镜加工中的全频段质量控制及光学参数的高精度检验,提出了应用双摆轴极坐标快速非球面加工技术及测杆法控制Hindle法检测光学参数。首先,描述了双摆轴极坐标快速非球面加工技术及设备;然后,介绍了应用测杆法控制Hindle检测法中标准球面镜顶点分别与被检非球面镜顶点及其焦点的光学间隔,并对其控制精度进行了分析;最后,针对Φ158mm的凸非球面,给出了双摆轴加工的检验结果,并对检测精度进行了分析。实验结果表明:应用双摆轴加工工艺在使低频误差快速收敛的同时,可以有效抑制中频误差,其低频误差的控制精度可以稳定地达到λ/30(λ=633 nm);应用测杆装调Hindle检测光路的控制极限误差为±0.065 mm,两个光学间隔参数的公差分别为±0.22 mm和±0.30 mm。应用双摆轴加工技术实现了凸非球面的快速加工与全频段质量控制,采用Hindle检测凸非球面得到面形精度为0.022λ(RMS,@633 nm),满足光学设计技术指标要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号