首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cross sections of partial photoneutron reactions are evaluated for the 63,65Cu and 80Se isotopes. The cross sections are free of systematic uncertainties from shortcomings of the experimental methods for neutron multiplicity sorting based on measurements of neutron energy used in experiments with quasimonoenergetic annihilation photon beams. An experimental-theoretical method is used to evaluate cross sections σeval(γ, in)= Fitheor σexp(γ, xn), where ratios Fitheor = σtheor(γ, in)/σtheor(γ, xn) = σtheor(γ, in)/σtheor[(γ, 1n) + 2(γ, 2n) + …] are calculated using a combined model of photonuclear reactions, and σexp(γ, xn) is the experimental cross section of the neutron yield reaction free from neutron multiplicity sorting problems. The cross sections are evaluated for reactions (γ, 1n) and (γ, 2n) for the 63,65Cu and 80Se isotopes, and for the total photoneutron reaction σ(γ, Sn) = σ[(γ, 1n) + (γ, 2n) + …]. It is shown that noticeable deviations of the experimental cross sections from the evaluated values result from the unreliable sorting of neutrons between the channels with multiplicities 1 and 2.  相似文献   

2.
Experimental photonuclear reaction cross sections obtained in experiments using quasimonoenergetic annihilation, monoenergetic tagged photons, and bremsstrahlung γ-radiation are analyzed using physical criteria for the reliability of data on the 89Y nucleus. It is found that the reliability of data on the cross sections of partial reactions (γ, 1n) and (γ, 2n), obtained by means of photoneutron multiplicity sorting, is highly doubtful. Reliable cross sections of reactions (γ, 1n) and (γ, 2n) are obtained using the experimental–theoretical method (ETM) for evaluating using both experimental cross sections of neutron yield reaction σexp(γ, xn) that are free of neutron multiplicity problems, and theoretically calculated F i theor ratios of the cross sections of definite (i) partial reactions to cross section σtheor(γ, xn). It is shown that the evaluated cross sections differ noticeably from the experimental data.  相似文献   

3.
Basic methods for determining cross sections for photoneutron partial reactions are examined. They are obtained directly in experiments with quasimonoeneregetic annihilation photons or from the cross section for the (γ, xn) = (γ, 1n) + 2(γ, 2n) + 3(γ, 3n) +... neutron-yield reaction in experiments with bremsstrahlung photons by introducing corrections based on statistical nuclear-reaction theory. The difference in the conditions of these experiments, which leads to discrepancies between their results because of sizable systematic errors, is analyzed. Physical criteria are used to study the reliability of data on the photodisintegration of 133Cs, 138Ba, and 209Bi nuclei. The cross sections for partial and total reactions satisfying the reliability criteria are evaluated within the experimental–theoretical method (σeval(γ, in) = Fitheor × σexpt(γ, xn)) on the basis of the experimental cross sections σexpt(γ, xn) and the results of the calculations within the combined model of photonuclear reactions.  相似文献   

4.
The reliability of experimental cross sections obtained for (γ, 1n), (γ, 2n), and (γ, 3n) partial photoneutron reactions using beams of quasimonoenergetic annihilation photons and bremsstrahlung is analyzed by employing data for a large number of medium-heavy and heavy nuclei, including those of 63,65Cu, 80Se, 90,91,94Zr, 115In, 112?124Sn, 133Cs, 138Ba, 159Tb, 181Ta, 186?192Os, 197Au, 208Pb, and 209Bi. The ratios of the cross sections of definite partial reactions to the cross section of the neutron-yield reaction, F i = σ(γ, in)/σ(γ, xn), are used as criteria of experimental-data reliability. By definition, positive values of these ratios should not exceed the upper limits of 1.00, 0.50, 0.33,... for i = 1, 2, 3,..., respectively. For many nuclei, unreliable values of the above ratios were found to correlate clearly in various photon-energy regions F i with physically forbidden negative values of cross sections of partial reactions. On this basis, one can conclude that correspondent experimental data are unreliable. Significant systematic uncertainties of the methods used to determine photoneutron multiplicity are shown to be the main reason for this. New partial-reaction cross sections that satisfy the above data-reliability criteria were evaluated within an experimental–theoretical method [σ eval(γ, in) = F i theor (γ, in) × σ expt(γ, xn)] by employing the ratios F i theor (γ, in) calculated on the basis of a combined photonuclear-reaction model. It was obtained that cross sections evaluated in this way deviate substantially from the results of many experiments performed via neutron-multiplicity sorting, but, at the same time, agree with the results of alternative activation experiments. Prospects of employing methods that would provide, without recourse to photoneutron-multiplicity sorting, reliable data on cross sections of partial photoneutron reactions are discussed.  相似文献   

5.
New data on the mechanism of decay of the giant dipole resonance in the 58Ni nucleus are obtained from an analysis of the experimental cross sections for the photonucleon reactions 58Ni(γ, pi)57Co and 58Ni(γ, ni)57Ni. The method used in this analysis takes into account both the energy spread of the dipole strength concentrated in various isospin components of the giant dipole resonance and the spread of the spectroscopic strength of the populated nucleon-hole states over the levels of the final nuclei. The entire body of experimental spectroscopic information about the levels of the final nuclei 57Co and 57Ni is employed. It is found that the probability of the semidirect mechanism of decay of the giant dipole resonance in the 57Ni nucleus lies in the range 0.16–0.3. The probability of semidirect processes is much higher in the (γ, n) channel (0.28–0.62) than in the (γ, p) channel (0.07–0.17).  相似文献   

6.
Isomeric ratios of 179Hf m2,g yields in the (γ, n) reaction and the cross section for the 179Hf m2 population in the (α, p) reaction are measured for the first time at the end-point energies of 15.1 and 17.5 MeV for bremsstrahlung photons and 26 MeV for alpha particles. The results are σ = (1.1 ± 0.11) × 10?27 cm2 for the 176Lu(α, p)179Hf m2 reaction and Y m2/Y g = (6.1 ± 0.3) × 10?6 and (3.7 ± 0.2) × 10?6 for the 180Hf(γ, n)179Hf m22 reaction at Е ep =15.1 and 17.5 MeV, respectively. The experimental data on the relative 179Hf m2 yield indicate a single-humped shape of the excitation function for the 180Hf(γ, n)179Hf m2 reaction. Simulation is performed using the TALYS-1.4 and EMPIRE-3.2 codes.  相似文献   

7.
The cross sections of partial photoneutron reactions for 98Mo were evaluated. These cross sections are free from the shortcomings of various methods for neutron multiplicity determination used at the beams of quasimonoenergetic annihilation photons and bremsstrahlung radiation. New data on the cross sections of reactions (γ, 1n), (γ, 2n), and (γ, 3n) were obtained using the experimental–theoretical method for evaluation of cross sections of partial reactions satisfying the introduced physical reliability criteria. It is demonstrated that considerable deviations of the experimental cross sections from the evaluated ones result from an inaccurate sorting of neutrons between channels with a multiplicity of 1, 2, and 3.  相似文献   

8.
Excitation functions are measured for the fusion reactions 197Au(4He, xn)201?xn Tl that are induced by alpha-particle interaction with gold nuclei in the energy range 14–36 MeV and in which x neutrons (0 ≤ x ≤ 3) are evaporated. The stack-activation technique was used to record and separate reaction products. Experimental data on the fusion reactions followed by evaporation of one to three neutrons agree with results of previous studies. For the radiative-capture reaction 197Au(4He,γ)201Tl, the upper limit on the cross section proved to be much lower. The excitation functions for the reactions subjected to measurements are compared with the results of calculations based on the statistical model and with the results of an experiment performed previously in a 6He beam.  相似文献   

9.
The time-of-flight technique is used to measure the ratios R(E, E n )=N(E, E n )/NCf(E) of the normalized (to unity) spectra N(E, E n ) of neutrons accompanying the neutron-induced fission of 238U at primary-neutron energies of E n =6.0 and 7.0 MeV to the spectrum NCf(E) neutrons from the spontaneous fission of 252Cf. These experimental data and the results of their analysis are discussed together with data that were previously obtained for the neutron-induced fission of 238U at the primary energies of E n =2.9, 5.0, 13.2, 14.7, 16.0, and 17.7 MeV.  相似文献   

10.
The temperature behavior of the EPR spectra of the Gd3+ impurity center in single crystals of SrMoO4 in the temperature range T = 99–375 K is studied. The analysis of the temperature dependences of the spin Hamiltonian b 2 0 (T) = b2(F) + b2(L) and P 2 0 (T) = P2(F) + P2(L) (for Gd157) describing the EPR spectrum and contributing to the Gd3+ ground state splitting ΔE is carried out. In terms of the Newman model, the values of b2(L) and P2(L) depending on the thermal expansion of the static lattice are estimated; the b2(F) and P2(F) spin-phonon contributions determined by the lattice ion oscillations are separated. The analysis of b 2 0 (T) and P 2 0 (T) is evidence of the positive contribution of the spin-phonon interaction; the model of the local oscillations of the impurity cluster with close frequencies ω describes well the temperature behavior of b2(F) and P2(F).  相似文献   

11.
The effect of uniaxial mechanical pressure σ m ≤ 150 bar on the spectral (300–800 nm) dependence of the birefringerence Δn i and refractive indices n i of (NH4)2SO4 crystals has been investigated. It is shown that the dispersion of n i (λ) and Δn i (λ) is normal and sharply increases with approach to the absorption edge. It is established that uniaxial pressure does not change the character of the dispersions dn i / and dΔn i / and only affects their magnitudes. It is shown that the increase in the refractive indices under uniaxial stress is mainly due to the increase in the refraction caused by the increase in the band gap and long-wavelength shift of the UV absorption band maximum.  相似文献   

12.
The effect of a uniaxial mechanical compression (σm ≤ 100 bar) on the spectral dependences (300–800 nm) of the birefringence Δn i and refractive indices n i of K2SO4 crystals is studied. The electronic polarizabilities, refractions, and parameters (λ0i , B 1i ) of ultraviolet oscillators of mechanically compressed crystals are calculated. It is shown that the dispersions of Δn i(λ) and n i(λ) are normal and sharply increase near the absorption edge. It is found that the uniaxial compression changes the value of the dispersions dΔn i/dλ and dn i/dλ rather than their character. It is ascertained that the simultaneous action of the compressions σx and σz, as well as of σy and σz, leads to the appearance of new isotropic states in the K2SO4 crystal, which manifests itself in the equality of corresponding birefringences. It is shown that the baric dependences n i(σ) are determined by the change in the density of oscillators (~30%), by the shift of the absorption edge and effective band maximum and by the change in the oscillator strength (~70%).  相似文献   

13.
The spectra of prompt fission neutrons from the reaction 238U(n, F) for neutrons of energy in the range E n ≤ 20 MeV are interpreted within the statistical model. It is shown that exclusive spectra of prefission neutrons emitted in (n, xnf) reactions play a decisive role in describing the observed promptfission-neutron spectra and determine the average energies of prompt-fission neutrons. The dependence of the effect of prefission neutrons on the fissility of a target nucleus is demonstrated for the reactions 232Th(n, F), 235U(n, F), and 239Pu(n, F).  相似文献   

14.
Liquid Argon was irradiated with bremsstrahlung from 18 to 31 MeV endpoint energy in steps of 2 MeV. The yields of the reactions Ar40(γ, n)+(γ, p) and Ar38(γ, n) were measured by detecting the 269a and the 35d rest activity with a low-level-counter. Cross section curves for the (γ, n)-processes could be found from the yield values, and they allowed together withσ N, σ(γ, p) andσ(γ, np) a determination ofσ(γ, 2n) and σγabs for Ar40. The integrated cross section forσ(γ, n) from threshold to 33 MeV yields (200±40) MeVmb for Ar40 and (210±40) MeVmb for Ar38, the corresponding value for σγabs being (450±60) MeVmb for Ar40.  相似文献   

15.
The characteristics of Li+-ion conductivity σdc of structural γ modifications of Li3R2(PO4)3 compounds (R = Fe, Sc) existing in the superionic state have been investigated by impedance spectroscopy. The type of structural framework [R2P3O12]3- affects the σdc value and the σdc activation enthalpy in these compounds. The ion transport activation enthalpy in γ-Li3R2(PO4)3Hσ = 0.31 ± 0.03 eV) is lower than in γ-Li3Fe2(PO4)3Hσ = 0.36 ± 0.03 eV). The conductivity of γ-Li3Fe2(PO4)3dc = 0.02 S/cm at 573 K) is twice as high as that of γ-Li3R2(PO4)3. A decrease in temperature causes a structural transformation of Li3R2(PO4)3 from the superionic γ modification (space group Pcan) through the intermediate metastable β modification (space group P21/n) into the “dielectric” α modification (space group P21/n). Upon cooling, σdc for both phosphates decreases by a factor of about 100 at the superionic TSIC transition. In Li3Fe2(PO4)3 σdc gradually decreases in the temperature range TSIC = 430–540 K, whereas in Li3R2(PO4)3 σdc undergoes a jump at TSIC = 540 ± 25 K. Possible crystallochemical factors responsible for the difference in the σdc and ΔHσ values and the thermodynamics and kinetics of the superionic transition for Li3R2(PO4)3 are discussed.  相似文献   

16.
The photoionization cross sections of the 4p shell and the 4s main level and 4p 4(3 P) 5s 4 P 5/2, 3/2 satellite subvalence levels of KrII have been calculated in the 4s-near-threshold range of excitation energies from 28.48 to 28.70 eV. The calculation takes into account the core relaxation by the methods of the theory of non-orthogonal orbitals, the interaction between resonant states through autoionization channels by solving the complex secular equation, and the interaction between the channels of the continuous spectrum in all orders of the perturbation theory by the K-matrix method. Good quantitative agreement between the energy-integrated theoretical and experimental photoionization cross sections for the satellite levels has been obtained for the first time. It is shown that only simultaneous consideration of the above-mentioned effects leads to such agreement. The resonant structure of the photoionization cross sections in this excitation energy range is related to the autoionization decay of the 4p 45s(4 P 1/2)np and 4p 45s(2 P 3/2)np Rydberg series. The specificity of this process is that both series manifest themselves not independently but owing to their strong electrostatic interaction with the prominent 4p 4(1 D)5s 2 D 5/2 6p 3/2 resonance, which lies in this excitation energy range.  相似文献   

17.
Systematic discrepancies between the results of various experiments devoted to determining cross sections for total and partial photoneutron reactions are analyzed by using objective criteria of reliability of data in terms of the transitional photoneutron-multiplicity function F i = σ(γ, in)/σ(γ, xn), whose values for i = 1, 2, 3, ... cannot exceed by definition 1.00, 0.50, 0.33, ..., respectively. It was found that the majority of experimental data on the cross sections obtained for (γ, n), (γ, 2n), and (γ, 3n) reactions with the aid of methods of photoneutron multiplicity sorting do not meet objective criteria (in particular, F 2 > 0.50 for a vast body of data). New data on the cross sections for partial reactions on 181Ta and 208Pb nuclei were obtained within a new experimental-theoretical method that was proposed for the evaluation of cross sections for partial reactions and in which the experimental neutron yield cross section σ expt(γ, xn) = σ(γ, n) + 2σ(γ, 2n) + 3σ(γ, 3n) + ..., which is free from problems associated with determining neutron multiplicities, is used simultaneously with the functions F i theor calculated within a combined model of photonuclear reactions.  相似文献   

18.
The results of studies of the absorption spectra of nickel orthoborate Ni3(BO3)2 in the range of electronic dd-transitions are reported. The obtained data are analyzed in the framework of the crystal field theory. The Ni2+ ions are located in two crystallographically nonequivalent positions 2a and 4f with point symmetry groups C2h and C2, respectively, surrounded by six oxygen ions forming deformed octahedra. The absorption spectra exhibit three intense bands corresponding to spin-resolved transitions from the ground state of nickel ion 3A2g (3F) to the sublevels of the 3T2g (3F), 3T1g (3F) and 3T1g (3P) triplets split by the spinorbit interaction and the rhombic component of the crystal field. At temperatures below 100 K, the spectra exhibit a thin structure, in which phonon-free lines can be distinguished. Comparison of the calculated frequencies of the zero-phonon transitions with the experimental data allows estimating parameters of the crystal field acting on the nickel ions in the 2a- and 4f-positions, as well as the parameters of electrostatic interaction between the 3d electrons and spin-orbit interaction constants.  相似文献   

19.
Cross sections of partial photoneutron reactions free of the shortcomings of different ways of determining the multiplicity of neutrons used on beams of quasi-monoenergetic annihilation photons are evaluated for 139La. The experimental-theoretical method of evaluation of partial reaction cross sections satisfying proposed data reliability criteria is used to obtain new data on the cross sections of reactions (γ, 1n), (γ, 2n), and (γ, 3n). It is shown that noticeable deviations of experimental cross sections from evaluated values are due to the unreliable sorting of neutrons between channels with multiplicities of 1, 2, and 3.  相似文献   

20.
With the aid of the results obtained by evaluating cross sections of partial photoneutron reactions on the isotope 116Sn and the energy spectra of neutrons originating from these reactions, the possible reasons for the well-known discrepancies between the results of different photonuclear experiments were studied on the basis of a combinedmodel of photonuclear reactions. On the basis of physical criteria of data reliability and an experimental–theoretical method for evaluating cross sections of partial reactions, it was found that these discrepancies were due to unreliably redistributing neutrons between (γ, 1n), (γ, 2n), and (γ, 3n) reactions because of nontrivial correlations between the experimentally measured energy of neutrons and their multiplicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号