首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We investigate the nonlinear Schrödinger equation iu t u+|u| p?1 u = 0with 1+ 4/N < p < 1+ 4/N?2 (when N = 1, 2, 1 + 4/N < p < ∞) in energy space H 1 and study the divergent property of infinite-variance and nonradial solutions. If \(M{\left( u \right)^{\frac{{1 - {s_C}}}{{{s_C}}}}}E\left( u \right) \prec M{\left( Q \right)^{\frac{{1 - {s_C}}}{{{s_C}}}}}E\left( Q \right)\) and \(\left\| {{u_0}} \right\|_2^{\frac{{1 - {s_c}}}{{{s_c}}}}\left\| {\nabla {u_0}} \right\|_2^{\frac{{1 - {s_c}}}{{{s_c}}}}{\left\| {\nabla Q} \right\|_2}\), then either u(t) blows up in finite forward time or u(t) exists globally for positive time and there exists a time sequence t n → +∞ such that \({\left\| {\nabla u\left( {{t_n}} \right)} \right\|_2} \to + \infty \). Here Q is the ground state solution of ?(1?s c )QQ+Q p?1 Q = 0. A similar result holds for negative time. This extend the result of the 3D cubic Schrödinger equation obtained by Holmer to the general mass-supercritical and energy-subcritical case.  相似文献   

2.
3.
In this paper we establish the following estimate:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant \frac{{{c_T}}}{{{\varepsilon ^2}}}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right){M_{L{{\left( {\log L} \right)}^{1 + \varepsilon }}}}} \omega \left( x \right)dx$$
where ω ≥ 0, 0 < ε < 1 and Φ(t) = t(1 + log+(t)). This inequality relies upon the following sharp L p estimate:
$${\left\| {\left[ {b,T} \right]f} \right\|_{{L^p}\left( \omega \right)}} \leqslant {c_T}{\left( {p'} \right)^2}{p^2}{\left( {\frac{{p - 1}}{\delta }} \right)^{\frac{1}{{p'}}}}{\left\| b \right\|_{BMO}}{\left\| f \right\|_{{L^p}\left( {{M_{L{{\left( {{{\log }_L}} \right)}^{2p - 1 + {\delta ^\omega }}}}}} \right)}}$$
where 1 < p < ∞, ω ≥ 0 and 0 < δ < 1. As a consequence we recover the following estimate essentially contained in [18]:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant {c_T}{\left[ \omega \right]_{{A_\infty }}}{\left( {1 + {{\log }^ + }{{\left[ \omega \right]}_{{A_\infty }}}} \right)^2}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right)M} \omega \left( x \right)dx.$$
We also obtain the analogue estimates for symbol-multilinear commutators for a wider class of symbols.
  相似文献   

4.
Let (Fn)n≥0 be the Fibonacci sequence. For 1 ≤ km, the Fibonomial coefficient is defined as
$${\left[ {\begin{array}{*{20}{c}} n \\ k \end{array}} \right]_F} = \frac{{{F_{n - k + 1}} \cdots {F_{n - 1}}{F_n}}}{{{F_1} \cdots {F_k}}}$$
. In 2013, Marques, Sellers and Trojovský proved that if p is a prime number such that p ≡ ±1 (mod 5), then p?\({\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]_F}\) for all integers a ≥ 1. In 2010, in particular, Kilic generalized the Fibonomial coefficients for
$${\left[ {\begin{array}{*{20}{c}} n \\ k \end{array}} \right]_{F,m}} = \frac{{{F_{\left( {n - k + 1} \right)m}} \cdots {F_{\left( {n - 1} \right)m}}{F_{nm}}}}{{{F_m} \cdots {F_{km}}}}$$
. In this note, we generalize Marques, Sellers and Trojovský result to prove, in particular, that if p ≡ ±1 (mod 5), then \({\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]_{F,m}} \equiv 1\) (mod p), for all a ≥ 0 and m ≥ 1.
  相似文献   

5.
Let (F n ) n≥0 be the Fibonacci sequence. For 1 ≤ km, the Fibonomial coefficient is defined as
$${\left[ {\begin{array}{*{20}{c}} m \\ k \end{array}} \right]_F} = \frac{{{F_{m - k + 1}} \cdots {F_{m - 1}}{F_m}}}{{{F_1} \cdots {F_k}}}$$
. In 2013, Marques, Sellers and Trojovský proved that if p is a prime number such that p ≡ ±2 (mod 5), then \(p{\left| {\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]} \right._F}\) for all integers a ≥ 1. In 2015, Marques and Trojovský worked on the p-adic order of \({\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]_F}\) for all a ≥ 1 when p ≠ 5. In this paper, we shall provide the exact p-adic order of \({\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]_F}\) for all integers a, b ≥ 1 and for all prime number p.
  相似文献   

6.
We study the nonexistence of weak solutions of higher-order elliptic and parabolic inequalities of the following types: \(\sum {_{i = 1}^N\sum\nolimits_{{e_i} \leqslant {\alpha _i} \leqslant {m_i}} {D_{{x_i}}^{{\alpha _i}}\left( {{A_{{\alpha _i}}}\left( {x,u} \right)} \right)} \geqslant f\left( {x,u} \right),} x \in {\mathbb{R}^N}\), and \({u_t} + \sum {_{i = 1}^N\sum\nolimits_{{k_i} \leqslant {\beta _i} \leqslant {n_i}} {D_{{x_i}}^{{\beta _i}}\left( {{B_{{\beta _i}}}\left( {x,t,u} \right)} \right)} > g\left( {x,t,u} \right),\left( {x,t} \right)} \in {\mathbb{R}^N} \times {\mathbb{R}_ + }\), where l i , m i , k i , n i ∈ N satisfy the condition l i , k i > 1 for all i = 1,..., N, and A αi (x, u), B βi (x, t, u), f(x, u), and g(x, t, u) are some given Carathéodory functions. Under appropriate conditions on the functions A αi , B βi , f, and g, we prove theorems on the nonexistence of solutions of these inequalities.  相似文献   

7.
For the linear positive Korovkin operator \(f\left( x \right) \to {t_n}\left( {f;x} \right) = \frac{1}{\pi }\int_{ - \pi }^\pi {f\left( {x + t} \right)E\left( t \right)dt} \), where E(x) is the Egervary–Szász polynomial and the corresponding interpolation mean \({t_{n,N}}\left( {f;x} \right) = \frac{1}{N}\sum\limits_{k = - N}^{N - 1} {{E_n}\left( {x - \frac{{\pi k}}{N}} \right)f\left( {\frac{{\pi k}}{N}} \right)} \), the Jackson-type inequalities \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \left( {1 + \pi } \right){\omega _f}\left( {\frac{1}{n}} \right),\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant 2{\omega _f}\left( {\frac{\pi }{{n + 1}}} \right)\), where ωf (x) denotes the modulus of continuity, are proved for N > n/2. For ωf (x) ≤ Mx, the inequality \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \frac{{\pi M}}{{n + 1}}\). is established. As a consequence, an elementary derivation of an asymptotically sharp estimate of the Kolmogorov width of a compact set of functions satisfying the Lipschitz condition is obtained.  相似文献   

8.
Let m ≥ 2, the numbers p 1,…, p m ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + ...\frac{1}{{{p_m}}} < 1\), and γ1 ∈ L p1(?1), …, γ m \({L^{{p_m}}}\)(?1). We prove that, if the set of “resonance” points of each of these functions is nonempty and the “nonresonance” condition holds (both concepts have been introduced by the author for functions of spaces L p (?1), p ∈ (1, +∞]), we have the inequality \(\mathop {\sup }\limits_{a,b \in {R^1}} \left| {\int\limits_a^b {\prod\limits_{k = 1}^m {\left[ {{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)} \right]} d\tau } } \right| \leqslant C{\prod\limits_{k = 1}^m {\left\| {{\gamma _k} + \Delta {\gamma _k}} \right\|} _{L_{{a_k}}^{{p_k}}}}\left( {{\mathbb{R}^1}} \right)\), where the constant C > 0 is independent of functions \(\Delta {\gamma _k} \in L_{{a_k}}^{{p_k}}\left( {{\mathbb{R}^1}} \right)\) and \(L_{{a_k}}^{{p_k}}\left( {{\mathbb{R}^1}} \right) \subset {L^{{p_k}}}\left( {{\mathbb{R}^1}} \right)\), 1 ≤ km are some specially constructed normed spaces. In addition, we give a boundedness condition for the integral of the product of functions over a subset of ?1.  相似文献   

9.
It is known that if p is a sufficiently large prime, then, for every function f: Zp → [0, 1], there exists a continuous function f′: T → [0, 1] on the circle such that the averages of f and f′ across any prescribed system of linear forms of complexity 1 differ by at most ∈. This result follows from work of Sisask, building on Fourier-analytic arguments of Croot that answered a question of Green. We generalize this result to systems of complexity at most 2, replacing T with the torus T2 equipped with a specific filtration. To this end, we use a notion of modelling for filtered nilmanifolds, that we define in terms of equidistributed maps and combine this notion with tools of quadratic Fourier analysis. Our results yield expressions on the torus for limits of combinatorial quantities involving systems of complexity 2 on Zp. For instance, let m4(α, Zp) denote the minimum, over all sets A ? Zp of cardinality at least αp, of the density of 4-term arithmetic progressions inside A. We show that limp→∞ m4(α, Zp) is equal to the infimum, over all continuous functions f: T2 →[0, 1] with \({\smallint _{{T^2}}}f \geqslant a\), of the integral
$$\int_{{T^5}} {f\left( {\begin{array}{*{20}{c}}{{x_1}} \\ {{y_1}} \end{array}} \right)} f\left( {\begin{array}{*{20}{c}}{{x_1} + {x_2}} \\ {{y_1} + {y_2}} \end{array}} \right)f\left( {\begin{array}{*{20}{c}}{{x_1} + 2{x_2}} \\ {{y_1} + 2{y_2} + {y_3}} \end{array}} \right).f\left( {\begin{array}{*{20}{c}}{{x_1} + 3{x_2}} \\ {{y_1} + 3{y_2} = 3{y_3}} \end{array}} \right)d{\mu _{{T^5}}}({x_1},{x_2},{y_1},{y_2},{y_3})$$
  相似文献   

10.
We prove the well-posed solvability in the strong sense of the boundary value Problems
$$\begin{gathered} ( - 1)\frac{{_m d^{2m + 1} u}}{{dt^{2m + 1} }} + \sum\limits_{k = 0}^{m - 1} {\frac{{d^{k + 1} }}{{dt^{k + 1} }}} A_{2k + 1} (t)\frac{{d^k u}}{{dt^k }} + \sum\limits_{k = 1}^m {\frac{{d^k }}{{dt^k }}} A_{2k} (t)\frac{{d^k u}}{{dt^k }} + \lambda _m A_0 (t)u = f, \hfill \\ t \in ]0,t[,\lambda _m \geqslant 1, \hfill \\ {{d^i u} \mathord{\left/ {\vphantom {{d^i u} {dt^i }}} \right. \kern-\nulldelimiterspace} {dt^i }}|_{t = 0} = {{d^j u} \mathord{\left/ {\vphantom {{d^j u} {dt^j }}} \right. \kern-\nulldelimiterspace} {dt^j }}|_{t = T} = 0,i = 0,...,m,j = 0,...,m - 1,m = 0,1,..., \hfill \\ \end{gathered} $$
where the unbounded operators A s (t), s > 0, in a Hilbert space H have domains D(A s (t)) depending on t, are subordinate to the powers A 1?(s?1)/2m (t) of some self-adjoint operators A(t) ≥ 0 in H, are [(s+1)/2] times differentiable with respect to t, and satisfy some inequalities. In the space H, the maximally accretive operators A 0(t) and the symmetric operators A s (t), s > 0, are approximated by smooth maximally dissipative operators B(t) in such a way that
$$\begin{gathered} \mathop {lim}\limits_{\varepsilon \to 0} Re(A_0 (t)B_\varepsilon ^{ - 1} (t)(B_\varepsilon ^{ - 1} (t))^ * u,u)_H = Re(A_0 (t)u,u)_H \geqslant c(A(t)u,u)_H \hfill \\ \forall u \in D(A_0 (t)),c > 0, \hfill \\ \end{gathered} $$
, where the smoothing operators are defined by
$$B_\varepsilon ^{ - 1} (t) = (I - \varepsilon B(t))^{ - 1} ,(B_\varepsilon ^{ - 1} (t)) * = (I - \varepsilon B^ * (t))^{ - 1} ,\varepsilon > 0.$$
.
  相似文献   

11.
The main purpose of this paper is to establish the Hormander-Mihlin type theorem for Fourier multipliers with optimal smoothness on k-parameter Hardy spaces for k≥ 3 using the multiparameter Littlewood-Paley theory. For the sake of convenience and simplicity, we only consider the case k = 3, and the method works for all the cases k≥ 3:■where x =(x_1,x_2,x_3)∈R~(n_1)×R~(n_2)×R~(n_3) and ξ =(ξ_1,ξ_2,ξ_3)∈R~(n_1)×R~(n_2)×R~(n_3). One of our main results is the following:Assume that m(ξ) is a function on R~(n_1+n_2+n_3) satisfying ■ with s_i n_i(1/p-1/2) for 1≤i≤3. Then T_m is bounded from H~p(R~(n_1)×R~(n_2)×R~(n_3) to H~p(R~(n_1)×R~(n_2)×R~(n_3)for all 0 p≤1 and ■ Moreover, the smoothness assumption on s_i for 1≤i≤3 is optimal. Here we have used the notations m_(j,k,l)(ξ)=m(2~jξ_1,2~kξ_2,2~lξ_3)Ψ(ξ_1)Ψ(ξ_2)Ψ(ξ_3) and Ψ(ξ_i) is a suitable cut-off function on R~(n_i) for1≤i≤3, and W~(s_1,s_2,s_3) is a three-parameter Sobolev space on R~(n_1)×R~(n_2)× R~(n_3).Because the Fefferman criterion breaks down in three parameters or more, we consider the L~p boundedness of the Littlewood-Paley square function of T_mf to establish its boundedness on the multi-parameter Hardy spaces.  相似文献   

12.
Any analytic signal fa(e~(it)) can be written as a product of its minimum-phase signal part(the outer function part) and its all-phase signal part(the inner function part). Due to the importance of such decomposition, Kumarasan and Rao(1999), implementing the idea of the Szeg?o limit theorem(see below),proposed an algorithm to obtain approximations of the minimum-phase signal of a polynomial analytic signal fa(e~(it)) = e~(iN0t)M∑k=0a_k~(eikt),(0.1)where a_0≠ 0, a_M≠ 0. Their method involves minimizing the energy E(f_a, h_1, h_2,..., h_H) =1/(2π)∫_0~(2π)|1+H∑k=1h_k~(eikt)|~2|fa(e~(it))|~2dt(0.2) with the undetermined complex numbers hk's by the least mean square error method. In the limiting procedure H →∞, one obtains approximate solutions of the minimum-phase signal. What is achieved in the present paper is two-fold. On one hand, we rigorously prove that, if fa(e~(it)) is a polynomial analytic signal as given in(0.1),then for any integer H≥M, and with |fa(e~(it))|~2 in the integrand part of(0.2) being replaced with 1/|fa(e~(it))|~2,the exact solution of the minimum-phase signal of fa(e~(it)) can be extracted out. On the other hand, we show that the Fourier system e~(ikt) used in the above process may be replaced with the Takenaka-Malmquist(TM) system, r_k(e~(it)) :=((1-|α_k|~2e~(it))/(1-α_ke~(it))~(1/2)∏_(j=1)~(k-1)(e~(it)-α_j/(1-α_je~(it))~(1/2), k = 1, 2,..., r_0(e~(it)) = 1, i.e., the least mean square error method based on the TM system can also be used to extract out approximate solutions of minimum-phase signals for any functions f_a in the Hardy space. The advantage of the TM system method is that the parameters α_1,..., α_n,...determining the system can be adaptively selected in order to increase computational efficiency. In particular,adopting the n-best rational(Blaschke form) approximation selection for the n-tuple {α_1,..., α_n}, n≥N, where N is the degree of the given rational analytic signal, the minimum-phase part of a rational analytic signal can be accurately and efficiently extracted out.  相似文献   

13.
We present a variation-of-constants formula for functional differential equations of the form
$$\dot y = \mathcal{L}\left( t \right)y_t + f\left( {y_t,t} \right),\;y_{t_0}= \varphi $$
, where \(\mathcal{L}\) is a bounded linear operator and φ is a regulated function. Unlike the result by G. Shanholt (1972), where the functions involved are continuous, the novelty here is that the application t \(t \mapsto f\left( {y_t,t} \right)\) is Kurzweil integrable with t in an interval of ?, for each regulated function y. This means that t \(t \mapsto f\left( {y_t,t} \right)\) may admit not only many discontinuities, but it can also be highly oscillating and yet, we are able to obtain a variation-of-constants formula. Our main goal is achieved via theory of generalized ordinary differential equations introduced by J.Kurzweil (1957). As a matter of fact, we establish a variation-of-constants formula for general linear generalized ordinary differential equations in Banach spaces where the functions involved are Kurzweil integrable. We start by establishing a relation between the solutions of the Cauchy problem for a linear generalized ODE of type
$$\frac{{dx}}{{d\tau }} = D\left[ {A\left( t \right)x} \right],x\left( {{t_0}} \right) = \tilde x$$
and the solutions of the perturbed Cauchy problem
$$\frac{{dx}}{{d\tau }} = D\left[ {A\left( t \right)x + F\left( {x,t} \right)} \right],x\left( {{t_0}} \right) = \tilde x$$
Then we prove that there exists a one-to-one correspondence between a certain class of linear generalized ODE and the Cauchy problem for a linear functional differential equations of the form
$$\dot y = \mathcal{L}\left( t \right)y_t,\;y_{t_0} = \varphi$$
, where \(\mathcal{L}\) is a bounded linear operator and φ is a regulated function. The main result comes as a consequence of such results. Finally, because of the extent of generalized ODEs, we are also able to describe the variation-of-constants formula for both impulsive FDEs and measure neutral FDEs.
  相似文献   

14.
Following an idea of Lin, we prove that if A and B are two positive operators such that 0 mI ≤ A ≤m'I≤ M'I ≤ B ≤ MI, then Φ~2(A+B/2)≤K~2(h)/(1+(logM'/m'/g))~2Φ~2(A≠B) and Φ~2(A+B/2)≤K~2(h)/(1+(logM'/m'/g))~2(Φ(A)≠Φ(B))~2 where K(h)=(h+1)~2/4 and h = M/m and Φ is a positive unital linear map.  相似文献   

15.
In this paper,we investigate the intersection numbers of nearly Kirkman triple systems.J_N [v] is the set of all integers k such that there is a pair of NKTS(v)s with a common uncovered collection of 2-subset intersecting in k triples.It has been established that J_N[v]={0,1,...,v(v-2)/6-6,v(v-2)/6-4,v(v-2)/6} for any integers v ≡ 0(mod 6) and v≥66.For v≤60,there are 8 cases left undecided.  相似文献   

16.
We suggest a new approach to studying the isochronism of the system
${{dx} \mathord{\left/ {\vphantom {{dx} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = - y + p_n (x,y),{{dy} \mathord{\left/ {\vphantom {{dy} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = x + q_n (x,y),$
where p n and q n are homogeneous polynomials of degree n. This approach is based on the normal form
${{dX} \mathord{\left/ {\vphantom {{dX} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = - Y + XS(X,Y),{{dY} \mathord{\left/ {\vphantom {{dY} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = X + YS(X,Y)$
and its analog in polar coordinates. We prove a theorem on sufficient conditions for the strong isochronism of a center and a focus for the reduced system and obtain examples of centers with strong isochronism of degrees n = 4, 5. The present paper is the first to give examples of foci with strong isochronism for the system in question.
  相似文献   

17.
In this paper, we consider the two-dimensional Hausdorff operators on the power weighted Hardy space H_(|x|α)~1(R~2) ( -1 ≤α≤0), defined by H_(Φ,A)f(x)=∫R~2Φ(u)f(A(u)x)du,where Φ∈L_loc~1(R~2),A(u) = (α_(ij)(u))_(i,j=1)~2 is a 2×2 matrix, and each α_(i,j) is a measurablefunction.We obtain that HΦ,A is bounded from H_(|x|~α)~1(R~2) ( -1≤α≤0) to itself, if∫R2|Φ(u)‖det A~(-1)(u)|‖A(u)‖~(-α)ln(1+‖A~(-1)(u)‖~2/|det A~(-1)(u)|)du∞.This result improves some known theorems, and in some sense it is sharp.  相似文献   

18.
Suppose that m ≥ 2, and numbers p1, …, p m ∈ (1, +∞] satisfy the inequality 1/p1+…+1/p m < 1, and functions \({\gamma _1} \in {L^{{p_1}}}\left( {{\mathbb{R}^1}} \right),...,{\gamma _m} \in {L^{{p_m}}}\left( {{\mathbb{R}^1}} \right)\) are given. It is proven that, if the set of resonance points of each of these functions is nonempty and the so-called resonance condition holds, there will always exist arbitrarily small (in norm) perturbations \(\Delta {\gamma _k} \in {L^{{p_k}}}\left( {{\mathbb{R}^1}} \right)\) under which the set of resonance points of the function γk + Δγk coincides with that of the function γ k for 1 ≤ km, but in this case, \({\left\| {\int\limits_0^t {\prod\limits_{k = 1}^m {[{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)]d\tau } } } \right\|_{{L^\infty }\left( {{\mathbb{R}^1}} \right)}} = \infty\) The notion of a resonance point and the resonance condition for the functions of the spaces L p (R1), p ∈ (1, +∞], were introduced by the author in his previous papers.  相似文献   

19.
In this paper, characterizations of the embeddings between weighted Copson function spaces \(Co{p_{{p_1},{q_1}}}\left( {{u_1},{v_1}} \right)\) and weighted Cesàro function spaces \(Ce{s_{{p_2},{q_2}}}\left( {{u_2},{v_2}} \right)\) are given. In particular, two-sided estimates of the optimal constant c in the inequality
$${\left( {\int_0^\infty {{{\left( {\int_0^t {f{{\left( \tau \right)}^{{p_2}}}{v_2}\left( \tau \right)d\tau } } \right)}^{{q_2}/{p_2}}}{u_2}\left( t \right)dt} } \right)^{1/{q_2}}} \leqslant c{\left( {\int_0^\infty {{{\left( {\int_t^\infty {f{{\left( \tau \right)}^{{p_1}}}{v_1}\left( \tau \right)d\tau } } \right)}^{{q_1}/{p_1}}}{u_1}\left( t \right)dt} } \right)^{1/{q_1}}},$$
where p1, p2, q1, q2 ∈ (0,∞), p2q2 and u1, u2, v1, v2 are weights on (0,∞), are obtained. The most innovative part consists of the fact that possibly different parameters p1 and p2 and possibly different inner weights v1 and v2 are allowed. The proof is based on the combination of duality techniques with estimates of optimal constants of the embeddings between weighted Cesàro and Copson spaces and weighted Lebesgue spaces, which reduce the problem to the solutions of iterated Hardy-type inequalities.
  相似文献   

20.
Suppose β1 α1 ≥0,β2 α2 ≥ 0 and(k,j) ∈R2. In this paper, we mainly investigate the mapping properties of the operator T_αβf(x,y,z)=∫_Q~2f(x-t,y-s,z-t~ks~j)e~(-2πit-β1_s-β2)t~(-1-α1)s~(-1-α2)dtds on modulation spaces, where Q~2 = [0,1] x [0,1] is the unit square in two dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号