首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the experiments on a magnetically-induced drift of the easy axis on a soft surface of photoaligning material fluoro-polyvinyl-cinnamate. We found unexpected partial relaxation of the drift of the easy axis after switching the magnetic field off. This relaxation cannot be explained in a framework of the existing models and requires additional assumptions about the drift process. We propose a model that explains the experimental data suggesting elastic-like behaviour of the polymer fragments during the drift of the easy axis.  相似文献   

2.
The effect of molar ratio of two hydrated iron salts used as precursors into a (co)precipitation-based synthesis method, on the composition, size and specific saturation magnetization of mixed iron oxides and oxyhydroxides magnetic nanoparticles as reaction products, was studied. The preparation procedure is based on a salt-assisted solid-state chemical reaction. The obtained products are magnetic multiphase components with the mean size ranging from 3 to 10 nm and specific saturation magnetization between 25 and 95.5 emu/g. The specific saturation magnetization modifies in a non-linear manner as the molar ratio of the iron salts varies. Excepting one sample, for which Fe2+/Fe3+ molar ratio was zero, all magnetic nanoparticles show a ferrofluid-like behaviour in the colloidal form. The small size, ferrofluid-like behaviour, and controlled specific saturation magnetization allow the use of new synthesized nanoparticles in specific biomedical or industrial applications.  相似文献   

3.
The spin model of single domain ferromagnetic film is considered. Only the nearest-neighbor interactions are taken into account. The interactions depend on distances from surfaces. The external magnetic field is applied perpendicular to the easy axis lying in the plane of the film. The thermodynamic behaviour of the model is studied near the second-order ferro-paramagnetic phase transition for the component of the magnetization in the direction of the easy axis. The molecular-field theory is used. The phase diagram and profiles of the order parameter are obtained. Different feasible investigations of the phase transition are compared.  相似文献   

4.
We report the synthesis and self-assembly of different shapes and sizes of FePt nanoparticles. Our study shows that surfactants and solvent play an important role in the synthesis of different shapes and sizes of FePt nanoparticles. Higher boiling point solvents lead to the formation of spherical nanoparticles and low boiling point solvents form cubic nanoparticles. Our studies also indicate that self-assembly of FePt nanoparticles on substrates is a complex process that is sensitive to the concentration of excess surfactant in the nanoparticle solution.  相似文献   

5.
We present a novel and facile method enabling synthesis of iron oxide nanoparticles, which are composed mainly of maghemite according to X-ray diffraction (XRD) and Mössbauer spectroscopy studies. The proposed process is realized by anodic iron polarization in deaerated LiCl solutions containing both water and ethanol. Water seems to play an important role in the synthesis. Morphology of the product was studied by means of transmission electron microscopy and XRD. In the solution containing almost 100% of water a black suspension of round shaped maghemite nanoparticles of 20–40 nm size is obtained. Regulating water concentration allows to control nanoparticle size, which is reduced to 4–6 nm for 5% of water with a possibility to reach intermediate sizes. For 3% or lower water concentration nanoparticles are of a needle-like shape and form a reddish suspension. In this case phase determination is problematic due to a small particle size with the thickness of roughly 3 nm. However, XRD studies indicate the presence of ferrihydrite. Coercivities of the materials are similar to those reported for nanoparticle magnetite powders, whereas the saturation magnetization values are considerably smaller.  相似文献   

6.
Angular dependent magnetic Barkhausen noise (MBN) signals measured on plate steel, and on the inside and outside surfaces of sections of seam welded and spiral welded 2% Mn steel pipe are modeled by considering a system of dipole moments. The relative orientation of dipole moments is fixed within the material, but their magnitude grows in the presence of an applied field. Growth of the moments is proportional to the magnetic field projected along a particular moment axis. A single easy axis material consists of an isotropically aligned population of moments, giving the background, upon which is superimposed a population of moments with relative orientations that result in a net moment within the sample. A dual easy axis system is proposed to consist of: (i) a second population of moments with orientations resulting in a net moment with orientation different from that of the first and (ii) interactions, possibly quadrupolar in nature, that occur between the individual moments of each population. The model is used to explain differences in the angular-dependent MBN signal between the seam welded pipe, with a single easy axis, and the spiral welded pipe, with a dual easy axis. The source of the dual easy axis system in the spiral welded pipe, which is different on the two pipe surfaces, is considered in terms of the asymmetric manufacturing processes, relative to the pipe axis, applied during its production.  相似文献   

7.
The macroscopic magnetic properties such as remanent magnetization of the ferromagnetic multilayer system with random easy axis orientations is investigated by using a effective micromagnet approach. The multilayer, which alternating soft/hard layers in which their easy axis orientations is random build a nanostructured multilayer, is considered to meet periodic boundary condition, the dependence of remanence on thickness has been analytical derived. Author find that the remancence clearly depends on the thickness of the soft magnetic layer nearly independence of thickness of hard magnetic layer. this analytical results are in excellent agreement with previous numerical results.  相似文献   

8.
Water suspension of nanoparticles was studied by ultrasound spectroscopy. Nanoparticles have a core-shell structure with magnetic core Fe3O4 and surfactant shells. The surface of magnetic particles was coated with oleate sodium as the primary layer and polyethylene glycol as the secondary layer. The acoustic properties of suspensions, such as velocity and attenuation of ultrasonic waves, have been measured. From experimental data mechanical properties have been determined. Adiabatic compressibility of nanoparticles suspension decreased with increase of temperature. The changes of ultrasonic wave attenuation under the influence of the external magnetic field, show that magnetic liquids with high concentration of magnetic material (despite two surfactant shells) show tendency to aggregate.  相似文献   

9.
Analytical transmission electron microscopy is a proper method so as to uncover microstructure and composition of novel magnetic nanocrystals potentially used as biological markers. The focus of this study is the preparation and characterization of the (Fe1−xCox)1−yPty alloyed nanoparticles utilizing high-resolution transmission electron microscopy and dispersive X-ray analyses.  相似文献   

10.
邓娅  赵国平  薄鸟 《物理学报》2011,60(3):37502-037502
本文以界面交换耦合常数Ji和软磁相厚度Ls为主要参变量,研究了易轴与膜面平行情况下的Nd2Fe14B/α-Fe磁性多层膜的磁矩随外场变化的取向及磁滞回线,并得到了成核场的解析公式.分析发现,Ji对磁矩取向、钉扎场和矫顽力机理有着较大的影响.当Ls较小时,钉扎场等于成核场,随着Ji的减小 关键词: 成核场 钉扎场 矫顽力 磁滞回线  相似文献   

11.
CoPt nanoparticles are widely studied, in particular for their potentially very high magnetic anisotropy. However, their magnetic properties can differ from the bulk ones and they are expected to vary with the particle size. In this paper, we report the synthesis and characterization of well-defined CoPt nanoparticle samples produced in ultrahigh vacuum conditions following a physical route: the mass-selected low energy cluster beam deposition technique. This approach relies on an electrostatic deviation of ionized clusters which allows us to easily adjust the particle size, independently from the deposited equivalent thickness (i.e. the surface or volume particle density in a sample). Diluted samples made of CoPt particles, with different diameters, embedded in amorphous carbon are studied by transmission electron microscopy and superconducting interference device magnetometry, which gives access to the magnetic anisotropy energy distribution. We then compare the magnetic properties of two different particle sizes. The results are found to be consistent with an anisotropy constant (including its distribution) which does not evolve with the particle size in the range considered.  相似文献   

12.
Caused by the interaction between the particles, structural fluctuations influence thermodynamics and order of transformation of an ensemble of nanoparticles. A stringed thermodynamic analysis revealed that, in fluctuating ensembles, the ratio of particle numbers in the equilibrium over the one in the non-equilibrium phase is independent of any metastable in between. Structural transformations in such ensembles, connected to latent heat, are of infinite order. These findings are summarized in a set of theorems ruling structural fluctuations. Finally, the consequences of fluctuations are demonstrated by an example.  相似文献   

13.
Rhenium sulfide nanoparticles are associated with magnetic iron oxide through coprecipitation of iron salts with tetramethylammonium hydroxide. Sizes of the formed magnetic rhenium sulfide composite particles are in the range 5.5-12.5 nm. X-ray diffraction and energy-dispersive analysis of X-rays spectra demonstrate the coexistence of Fe3O4 and ReS2 in the composite particle, which confirm the formation of the magnetic rhenium sulfide composite nanoparticles. The association of rhenium sulfide with iron oxide not only keeps electronic state and composition of the rhenium sulfide nanoparticles, but also introduces magnetism with the level of 24.1 emu g-1 at 14 kOe. Surface modification with monocarboxyl-terminated poly(ethylene glycol) (MPEG-COOH) has the role of deaggregating the composite nanoparticles to be with average hydrodynamic size of 27.3 nm and improving the dispersion and the stability of the composite nanoparticles in water.  相似文献   

14.
Recent advances in the preparation and applications of composite magnetic nanoparticles are reviewed and summarized, with a focus on cancer-related applications.  相似文献   

15.
Gd-substituted Mn–Zn ferrite nanoparticles of different compositions were synthesized by chemical co-precipitation method. To study the reduction of the Curie temperature (TC) for different samples, their magnetic properties in dependence from the composition and cationic distribution were investigated. An attempt to lower the TC of superparamagnetic particles to the optimal temperature required in magnetic fluid hyperthermia (44–47 °C) was made.  相似文献   

16.
The delivery of noscapine therapies directly to the site of the tumor would ultimately allow higher concentrations of the drug to be delivered, and prolong circulation time in vivo to enhance the therapeutic outcome of this drug. Therefore, we sought to design magnetic based polymeric nanoparticles for the site directed delivery of noscapine to invasive tumors. We synthesized Fe3O4 nanoparticles with an average size of 10±2.5 nm. These Fe3O4 NPs were used to prepare noscapine loaded magnetic polymeric nanoparticles (NMNP) with an average size of 252±6.3 nm. Fourier transform infrared (FT-IR) spectroscopy showed the encapsulation of noscapine on the surface of the polymer matrix. The encapsulation of the Fe3O4 NPs on the surface of the polymer was confirmed by elemental analysis. We studied the drug loading efficiency of polylactide acid (PLLA) and poly (l-lactide acid-co-gylocolide) (PLGA) polymeric systems of various molecular weights. Our findings revealed that the molecular weight of the polymer plays a crucial role in the capacity of the drug loading on the polymer surface. Using a constant amount of polymer and Fe3O4 NPs, both PLLA and PLGA at lower molecule weights showed higher loading efficiencies for the drug on their surfaces.  相似文献   

17.
Compared with the top-down lithographic techniques, bottom-up chemical synthesis and self-assembly approaches offer much more flexibilities in creating magnetic nanostructures with controlled size, shape, composition and physical properties. This review summarizes some of the latest developments in this field, with emphasis mainly on transition metals, their alloys and metal oxide nanoparticles. The focus is directed towards the conditions of individual particles as well as large assemblies of particles through colloidal chemistry. Furthermore, some of the future directions in nanomagnetism from the perspective of physical chemists is also presented.  相似文献   

18.
A series of M-type strontium hexaferrite powders with substitution of Mn2+, Ni2+ and Ti4+ ions for Fe3+ ions according to the formula SrFe9(Mn0.5−xNixTi0.5)3O19, where x ranges from 0 to 0.5 with a step of 0.1, has been prepared via the conventional ceramic method. In order to get nanoparticles, the obtained powders were milled in a high energy SPEX mill for 1 h. XRD investigations of the unmilled and milled powders show that the prepared samples are all single phase hexaferrite. Lattice parameters and mean crystallite sizes of the powders were determined from the XRD data and Scherrer’s formula. Transmission electron microscope (TEM) was used to analyze their structures. Room temperature magnetizations and coercivities of the samples in a magnetic field of 15 kOe have been determined from the hysteresis loops. It was found that magnetizations of the milled samples were smaller than the magnetization of the unmilled samples. This decrease, based on core-shell model, has been attributed to the presence of a magnetically dead layer on the particles’ surface of the milled powders. In addition, the magnetizations of the milled samples decrease with the increase in x value. This decrease has been discussed according to site occupation of the substituted cations on the sublattices. The discussion also supports the increase of lattice parameters and the decrease of Curie temperature as x increases.  相似文献   

19.
In this work wüstite nanoparticles have been prepared via high-energy ball milling, using high-purity hematite (Fe2O3) and iron (Fe) powders as the starting materials. In order to get a single-phase wüstite different mole ratios of (Fe/Fe2O3) were milled, using a planetary mill. X-ray diffraction studies of the as-milled powders show that a single-phase wüstite was formed for a mole ratio of 0.6. Lattice parameter of the wüstite was obtained from XRD data, by which a value of 0.072 was obtained for x in Fe1−xO. A mean crystallite size of 13±1 nm was calculated for the single-phase wüstite, using Scherrer's formula. The morphology of the powders was also checked by TEM. Variations of pressure and temperature in the vial were recorded with respect to the milling time, using a GTM unit. Hysteresis loops of the as-milled powders at 5 K and room temperature have been obtained by SQUID and by VSM systems, respectively. The loops show non-zero coercivity, in contrast to the bulk wüstite. The observed magnetizations can be explained by a model based on the spinel-type defect clusters in non-stoichiometry wüstite.  相似文献   

20.
The Fe/Cu nanocomposites with iron as core and copper as shell have been successfully synthesized by a two-step reduction method. A spherical nanoparticle of γ-Fe was first fabricated by the reduction of ferrous chloride, and then the Fe particle was coated by nanocrystalline Cu through the reduction of copper sulfate. The thickness of copper shell has been tuned by varying the initial concentration of copper sulfate. The morphology, crystalline structure, chemical composition and magnetic properties of the products were investigated by using transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and vibrating sample magnetometer (VSM). It was found that the saturation magnetization (Ms) values of the Fe/Cu core–shell particles are varied owing to the different thickness of copper layer. Though the Ms value of the Fe/Cu nanocomposite is lower than that of pure iron nanoparticles, the higher Ms value (22.411 emu/g) of the Fe/Cu composites is also investigated. The result of the thermogravimetric analysis (TGA) showed the enhanced antioxidation capacity of the Fe/Cu nanocomposites. This kind of nanocomposites combined the excellent magnetism of iron and the electronic, thermal conductivity of copper, suggesting potential application as a novel electromagnetic material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号