首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The changes observed in the local atomic structure of an iron alloy with 6 at % Si as a result of thermomagnetic treatment in an alternating-current magnetic field and their correlation with magnetic characteristics, such as the domain structure and magnetic properties, have been investigated using Mössbauer spectroscopy. It has been shown that the destabilization of the domain structure is caused by the destruction of uniaxial magnetic anisotropy in domains due to a disordered distribution of pairs of silicon atoms along the 〈100〉 easy magnetization axes. Annealing and cooling without an external magnetic field and in an alternating-current magnetic field lead to a change in the magnetic texture of single-crystal samples of the siliconiron alloy. When the samples are annealed in an alternating-current magnetic field, the magnitude of this effect depends on the orientation of the magnetic field with respect to the crystallographic axes of the sample.  相似文献   

2.
We have systematically investigated the influence of annealing on the magnetic anisotropy properties of GaMnAs film using an epilayer with a Mn concentration of 6.2%. The GaMnAs epilayer was grown by molecular beam epitaxy and the planar Hall effect measurement was used to monitor the magnetic anisotropy of the film. We found significant annealing-induced changes in the magnetic anisotropy properties of the GaMnAs film that depended on the annealing conditions. For example, the cubic anisotropy that gave a four-fold symmetry of magnetic easy axes decreased while the uniaxial anisotropy that gave a two-fold symmetry of magnetic easy axes increases in the samples annealed temperature below 300 °C. In particular, the uniaxial anisotropy along the [010] direction in as-grown GaMnAs film changed to the [100] direction by rotating by 90° after the sample was annealed at 300 °C for 3 h. This investigation thus indicates that the magnitude and the direction of the magnetic anisotropy in the GaMnAs film can be effectively controlled by choosing an appropriate annealing time and temperature.  相似文献   

3.
Ferromagnetic resonance spectra of zinc ferrite and cobalt doped zinc ferrite nanoparticles, measured at various temperatures, exhibit an invariant point at a given field. This makes it possible to determine the equation relating the resonance field shift to the peak-to-peak linewidth. When particles are frozen in a matrix in a magnetic field, the anisotropy constant of the material can be derived from the angular variation of the resonance field. This procedure is useful to determine the thermal dependence of the anisotropy constant, but is shown to require various freezing temperatures experiments to estimate the accuracy of the deduced anisotropy constant values. It is also shown that the angular dependence of the resonance field is similar for a uniaxial (zinc ferrite) and cubic (zinc ferrite containing 40% cobalt ions) anisotropy. This unexpected result is explained by the weakness of the texturation, leading to a distribution in easy axes directions.  相似文献   

4.
We develop a model for ferromagnetic resonance in systems with competing uniaxial and cubic anisotropies. This model applies to (i) magnetic materials with both uniaxial and cubic anisotropies, and (ii) magnetic nanoparticles with effective core and surface anisotropies; We numerically compute the resonance frequency as a function of the field and the resonance field as a function of the direction of the applied field for an arbitrary ratio of cubic-to-uniaxial anisotropy. We also provide some approximate analytical expressions in the case of weak cubic anisotropy. We propose a method that uses these expressions for estimating the uniaxial and cubic anisotropy constants, and for determining the relative orientation of the cubic anisotropy axes with respect to the crystal principle axes. This method is applicable to the analysis of experimental data of resonance type measurements for which we give a worked example of an iron thin film with mixed anisotropy.  相似文献   

5.
A special consideration has been conducted on the dependencies of exchange bias and coercivity on rotatable antiferromagnetic anisotropy with respect to the collinear ferromagnetic anisotropy and field-cooling directions in ellipsoidal core/shell nanoparticles. With increasing the angle between antiferromagnetic and ferromagnetic easy axes, exchange bias field and coercivity both exhibit biaxial symmetries about the ferromagnetic easy and hard axes. Moreover, the variations of the antiferromagnetic anisotropy constant cannot change the trends of these novel behaviors, but only control their occurrences by dominating the coercive field behaviors. This new exchange-biased feature obtained by means of the special nanoparticle shape and the relative angle between anisotropies is of technological importance for maximizing exchange bias, in order to optimize the designs of the involved devices.  相似文献   

6.
Distribution of a magnetic moment in an exchange-coupled bilayer Fe/SmCo epitaxial structure grown on a (110) MgO substrate is visualized by the magnetooptic indicator film technique. The direction and the magnitude of the effective magnetization in this structure are determined both under external magnetic fields of variable magnitude and direction and after the removal of these fields. It is shown that such a heterostructure is remagnetized by a nonuniform rotation of a magnetic moment both along the thickness of a sample and in its plane. A field antiparallel to the axis of unidirectional anisotropy gives rise to spin springs with opposite chiralities in different regions of the magnetically soft ferromagnetic layer. The contributions of these springs to the net magnetization cancel out, thus decreasing the averaged magnetic moment and the remanent magnetization without their rotation. When the external field deviates from the easy axis, the balance is violated and the sample exhibits a quasi-uniform rotation of the magnetic moment. Asymmetry in the rotation of the magnetic moment is observed under the reversal of the field as well as under repeated remagnetization cycles. It is established that a monochiral spin spring is also formed in a rotating in-plane magnetic field when the magnitude of the field exceeds the critical value. Possible mechanisms of remagnetization in this system are discussed with regard to the original disordered orientation of magnetization of the magnetically soft layer with respect to the easy axis, which is defined by the variance of unidirectional anisotropy axes of this layer on the interface.  相似文献   

7.
This paper presents a calculation of the magnetic small-angle neutron scattering cross-section resulting from a dilute ensemble of superparamagnetic particles exhibiting uniaxial magnetic anisotropy. We focus on the two experimentally relevant scattering geometries in which the incident neutron beam is perpendicular or parallel to an applied magnetic field, and we discuss several orientations of the anisotropy axes with respect to the field. Magnetic anisotropy has no influence on the magnetic small-angle neutron scattering when the particles are mobile, as is the case e.g. in ferrofluids, but, when the particles are embedded in a rigid non-magnetic matrix and the orientations of the anisotropy axes are fixed, significant deviations compared to the case of negligible anisotropy are expected. For the particluar situation in which the anisotropy axes are parallel to the applied field, closed-form expressions suggest that an effective anisotropy energy or anisotropy-energy distribution can be determined from experimental scattering data. Received 8 November 2001  相似文献   

8.
It is shown in the framework of the generalized mean-field approximation taking into account spatial fluctuations of the local magnetic field that the collective effect of dipole interaction in a random 3D system of identical (rodlike) magnetic nanoparticles with parallel easy magnetization axes shifts the relaxation magnetization curves towards shorter times (i.e., accelerates the relaxation process). In addition, the course of this process depends (via the demagnetizing field) on the sample shape. The interaction between nanograins affects the magnetization relaxation of a random 2D system only when the magnetic moments of the grains are perpendicular to the plane of the system.  相似文献   

9.
The antiferromagnetic resonance spectrum was experimentally studied for a noncollinear RbMnBr3 antiferromagnet under a mechanical pressure applied to the sample in various directions. It is shown that the incommensurate magnetic phase existing in the initial system in the presence of regular crystallographic distortions is sensitive to the pressure applied along one of the sample axes. The critical transition field to the commensurate phase decreased under pressure. It was also found that the pressure influences the uniaxial anisotropy appearing in the crystal basal plane in the presence of orthorhombic distortions. These effects were analyzed with allowance for the domain structure of the sample.  相似文献   

10.
The role of interface inhomogeneities on macroscopic magnetic anisotropy terms was investigated using simple mathematical modeling. It is shown that the intrinsic anisotropies caused by the spin–orbit interaction in the presence of lateral inhomogeneities can create additional magnetic anisotropies with higher order angular terms. The lateral inhomogeneous distribution of the uniaxial anisotropy can result in the presence of a fourth order angular term. These anisotropies decrease the total energy, and their strength is affected by the exchange averaging effect. Large atomic terraces allow the local magnetic moment to deviate from the mean orientation resulting in negative higher order angular terms in magnetic anisotropies satisfying the sample symmetry. The negative sign results in the magnetic easy axes being oriented 45° with respect to the intrinsic uniaxial axis. It is shown that the additional higher order terms do not always have to satisfy the time inversion symmetry. Odd powers in directional cosines can arise when the exchange restoring torque becomes comparable to or weaker than torques from the internal fields. The additional higher order angular terms in magnetic anisotropies decrease usually more rapidly with the sample thickness than the intrinsic interface anisotropies. Their rapid decrease in strength with an increasing sample thickness allows one to distinguish them from the intrinsic interface anisotropies. It will be shown that the magnetic anisotropies originating in interface inhomogeneities can play an important role in the magnetic phase transitions of ultrathin film structures.  相似文献   

11.
12.
We study soft magnetic bilayers having orthogonal, in-plane easy axes. The layers are thicker than the Bloch wall width linked to the anisotropy, so that a helical magnetization with a large angle exists across the sample thickness. The magnetic domains structure has been investigated at both sample surfaces, using magneto-optical microscopy. The domain structure is found to be similar to that of double films with biquadratic coupling. Two kinds of domain walls are identified, namely with a 90° and 180° rotation of the average magnetization. The detailed structure and energy of these walls are studied by micromagnetic calculations.  相似文献   

13.
A magnetic transition accompanied by a sharp decrease in magnetization has been detected in an (NdSmDy)(FeCo)B alloy at temperature T = 110 K. It is found that the sample undergoes a spin-reorientation transition accompanied with a change in the type of magnetic anisotropy. The “easy axis”-type anisotropy corresponds to high temperatures T > 110 K. A magnetic structure of the type of “the cone of easy-magnetization axes” forms at low temperatures T < 110 K.  相似文献   

14.
We observed how perpendicular magnetic anisotropy, present in electrodeposited amorphous Co-P alloys, changes during heat treatment in the presence or absence of a magnetic field. The results show that, apart from “columnar” shape anisotropy, there are other mechanisms of anisotropy present in the samples, first a stress anisotropy which can reach a value close to that reached by shape anisotropy and second directional-order anisotropy of smaller magnitude than that due to stress. The latter only occurs when the sample is heated to over 140°C.  相似文献   

15.
A noncollinear configuration of magnetic anisotropy in spin valves with strong and weak interlayer couplings has been formed by annealing and cooling in a magnetic field. The dependence of the low-field magnetoresistance hysteresis loop width on the angle between the applied magnetic field and the principal axes of the magnetic anisotropy in a spin valve has been investigated. It has been found that, only in the case of a strong ferromagnetic interlayer coupling, the formation of a noncollinear configuration of the magnetic anisotropy provides a hysteresis-free character of the magnetization reversal of the free layer with retaining the maximum magnetoresistance and magnetoresistive sensitivity.  相似文献   

16.
Anisotropy of garnet ferrite films is investigated in the framework of the two-parametric model. It is shown that a garnet ferrite film with an arbitrarily oriented surface is characterized by biaxial anisotropy. The directions of the easy, intermediate, and hard magnetization axes are determined as functions of the misorientation angle and weak cubic anisotropy. It is demonstrated that the region of existence of homogeneous states in a magnetic field is bounded by a slant astroid. The magnetic susceptibility tensor and the ferromagnetic resonance frequency are calculated, and the dispersion law of spin waves is determined.  相似文献   

17.
The influence of Tb25Fe61Co14 thin film thicknesses varying from 2 to 300 nm on the structural and magnetic properties has been systematically investigated by using of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, magnetization, and magneto-optic Kerr effect microscopy measurements. Thin film growth mechanism is pursued and controlled by ex-situ X-ray refractometry measurements. X-ray diffraction studies reveal that the Tb25Fe61Co14 films are amorphous regardless of thin films thicknesses. The magnetic properties are found to be strongly related to thickness and preferred orientation. With an increase in film thickness, the easy axis of magnetization is reversed from in-plane to out-of-plane direction. The change in the easy axes direction also affects the remanence, coercivity and magnetic anisotropy values. The cause for the magnetic anisotropy direction change from in-plane to out-of-plane can be related to the preferred orientation of the thin film which depends on the large out-of-plane coercivity and plays an important role in deciding the easy axes direction of the films. According to our results, up to the 100 nm in-plane direction is dominated over the whole system under major Fe-Fe interaction region, after that point, the magnetic anisotropy direction change to the out-of-plane under major Tb-Fe/Tb-Co interaction region and preferred orientation dependent perpendicular magnetic anisotropic properties become more dominated with 2.7 kOe high coercive field values.  相似文献   

18.
It is shown for ferromagnetic US that an extremely large anisotropy restrains magnetic moments to 〈111〉 easy axes, resulting in a near cos θ angular dependence of the magnetization away from the 〈111〉 axes. This is further confirmed by torque measurements, which in addition show large hysteresis effects upon rotation through the hard axes. It is illustrated through torque and magnetization measurements that a near stable domain configuration can be established by field rotation through decreasing angular amplitude around a hard 〈001〉 direction. The anisotropy constant K1(T) is estimated by computing the small angle through which the magnetization deviates from the 〈111〉 axes when a field is applied along the [001] direction.  相似文献   

19.
The properties of antiferromagnetic (AFM)–ferromagnetic (FM) bilayer have been studied using self-consistent mean-field approximation for Heisenberg Hamiltonian. The perpendicular exchange coupling has been revealed in a bilayer with a compensated interface. For a uniform AFM film a symmetrical hysteresis loop has been calculated, because the transverse instability develops within the AFM film at certain critical value of external magnetic field. On the other hand, shifted hysteresis loop with a finite exchange bias field has been obtained for a non-uniform AFM film consisting of various AFM domains with perpendicular directions of the easy anisotropy axes.  相似文献   

20.
We have investigated the ferromagnetic resonance (FMR) response of as-made and temperature annealed FePt magnetic nanoparticles. The as-made nanoparticles, which have been fabricated by a chemical route, crystallize in the low magnetic anisotropy fcc phase and have a diameter in the range of 2-4 nm. The annealing of the particles at high temperatures (TA=550, 650 and C) in an inert Ar atmosphere produces a partial transformation to the high magnetocrystalline anisotropy L10 phase, with a significant increase in particle size and size distribution. FMR measurements at X-band (9.5 GHz) and Q-band (34 GHz) show a single relatively narrow line for the as-synthesized particles and a structure of two superimposed lines for the three annealed samples. The origin of this line shape has been attributed to the presence of the disordered fcc phase. Assuming that the system consists of a collection of identical particles with a random distribution of easy axes, we have been able to estimate a mean value for the magnetic anisotropy constant of the particles in the fcc phase, K∼2×106 erg/cm3. The measured line shape in the annealed samples can be explained if we consider that the magnetic anisotropy of the particles has a gaussian distribution with a relatively broad width.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号