首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, (1−x)(0.935Bi0.5Na0.5TiO3–0.065BaTiO3)–xKNbO3 (BNT–BT–KN, BNT–BT–100xKN) ceramics with x ranging from 0 to 0.1 were prepared by the conventional ceramic fabrication process. A large electrostrictive coefficient of ∼10−2 m4 C−2 is obtained with the composition x ranging from 0.02 to 0.1, which is close to the well-known electrostrictive material Pb(Mg1/3Nb2/3)O3. Under an electric field of 4 kV/mm, the electrostrictive strain can reach as high as 0.08%. Besides, the electric field induced strain behavior indicates a temperature independent behavior within the temperature range of 20 to 150°C. The large electrostrictive strain is suggested to be ascribed to the formation of non-polar (NP) phase developed by the KNbO3 substitution, and the high electrostrictive coefficient of BNT–BT–KN ceramics makes them great candidates to be applied in the new solid-state actuators.  相似文献   

2.
High field electrical switching on blown films of MoO3(60%)–P2O5(40%), MoO3(50%)–WO3(10%)–P2O5(40%), and MoO3(45%)–WO3(15%)–P2O5(40%) having different thicknesses was studied and compared. Switching was observed using two terminal samples. S-type current–voltage characteristic (current-controlled negative resistance—CCNR) with memory was observed in molybdenum–phosphate glasses, but N-type characteristic (voltage-controlled negative resistance—VCNR) with threshold in tungsten–molybdenum–phosphate glasses was observed. The important observation was that with the addition of WO3 to binary MoO3–P2O5 led to a change of IV characteristic from CCNR with memory to VCNR with threshold. The measurements of density and molar volume showed linear relation between MoO3 content and density which decreased with the increase of MoO3 content. The samples’ thickness had no significant effect on threshold voltage. The attained results also indicated that the electrode material had no effect on switching property of devices. The switching behavior of the devices did not show any dependence on the polarity of the applied voltage. In terms of the effect of heat on the switching behavior of molybdenum–phosphate glasses, it was found that threshold voltage decreases with increasing of temperature. Finally, the switching phenomenon was explained by thermal (formation of crystalline filaments) and electronic models.  相似文献   

3.
Features of the formation of lead-ferroniobate compounds in the xBaCO3–(1 – x)PbO–Fe2O3–Nb2O5 system by solid-phase synthesis are investigated. For perovskite-type lead-ferroniobate solid solution, a single-phase concentration region is revealed at 1233 K. The crystalline structures of the synthesized compounds are refined using Rietveld analysis and the Pm3?m and R3m space groups. Ceramic samples of lead ferroniobate are studied by scanning electron microscopy.  相似文献   

4.
5.
A method has been developed for fabricating nanoporous matrices based on anodic aluminum oxide for the deposition of ferromagnetic nanoparticles in them. The modes of deposition of strontium ferromolybdate thin films prepared by the ion-plasma method have been worked out, and the magnetic and magnetoresistive properties, structure, and composition of the films have been investigated. It has been revealed that the microstructure and properties of the strontium ferromolybdate films deposited by ionplasma sputtering depend on the deposition rate and the temperature of the substrate. Based on the measurement of the electrical resistivity of nanoheterostructures in a magnetic field, it has been found that the magnetoresistance reaches 14% at T = 15 K and B = 8 T, which is due to the manifestation of tunneling magnetoresistance.  相似文献   

6.
The refraction R of the diglycine nitrate (DGN) crystal, (NH2CH2COOH)2 · HNO3, in the para-and ferroelectric phases has been calculated in the model of noninteracting diatomic chemical bonds of the elementary unit cell of the crystal on the basis of the longitudinal and transversal polarizabilities of these bonds. The calculated magnitudes of the principal refractive indices n p , n m , and n g and the orientations of the optical indicatrix of the crystal agree satisfactorily with experimentally observed values. Introducing the coefficient of Lorenz-Lorentz interaction x into the corresponding formula permits better agreement of the calculated and experimental refractive indices of DGN crystal to be obtained. The temperature changes of these x coefficients upon the ferroelectric phase transition in the DGN crystal have been analyzed.  相似文献   

7.
Small core-shell Fe3O4@Pd superparamagnetic nanoparticles (MNPs) were obtained with good control in size and shape distribution by metal-complex thermal decomposition in organic media. The role of the stabilizer in the synthesis of MNPs was studied, employing oleylamine (OA), triphenylphosphine (TPP) and triphenylamine (TPA). The results revealed that, among the stabilizer investigated, the presence of oleylamine in the reaction media is crucial in order to obtain an uniform shell of Pd(0) in Fe3O4@Pd MNPs of 7?±?1 nm. The synthesized core-shell MNPs were tested in Pd-catalyzed Heck-Mizoroki and Suzuki-Miyaura coupling reactions and p-chloronitrobenzene hydrogenation. High conversion, good reaction yields, and good TOF values were achieved in the three reaction systems with this nanocatalyst. The core-shell nanoparticle was easily recovered by a simple magnetic separation using a neodymium commercial magnet, which allowed performing up to four cycles of reuse.
Graphical abstract ?
  相似文献   

8.
A series of glasses [(TeO2) x (B2O3)1−x ]1−y [Ag2O] y with x = 70 and y = 10, 15, 20, 25 and 30 mol% were synthesised by rapid quenching. Longitudinal and shear ultrasonic velocity were measured at room temperature and at 5 MHz frequency. Elastic properties, Poisson's ratio, microhardness, softening temperature and Debye temperature have been calculated from the measured density and ultrasonic velocity at room temperature. The experimental results indicate that the elastic constants depend upon the composition of the glasses and the role of the Ag2O inside the glass network is discussed. Estimated parameters based on Makishima–Mackenzie theory and bond compression model were calculated in order to analyse the experimental elastic moduli. Comparison between the experimental elastic moduli data obtained in the study and the calculated theoretically by the mentioned above models has been discussed.  相似文献   

9.
Thick-film layered magnetoelectric composites consisting of ferromagnetic and ferroelectric phases have been synthesized with nickel ferrite (NFO), cobalt ferrite, La0.7Sr0.3MnO3 (LSMO), or La0.7Ca0.3MnO3 (LCMO) and lead zirconate titanate (PZT). Structural, magnetic, and ferromagnetic resonance characterization shows evidence for defect-free ferrites, but deterioration of manganite parameters. The resistivity and dielectric constants are smaller than expected values. The magnetoelectric effect (ME) is stronger in ferrite–PZT than in manganite–PZT. The ME voltage coefficient E at room temperature is the highest in NFO–PZT and the smallest for LCMO–PZT. The transverse ME effect is an order of magnitude stronger than the longitudinal effect. The magnitude of E correlates well with magnetic permeability for the ferrites. PACS 75.80.+q; 75.70.Gg; 75.60.-d  相似文献   

10.
Electronic properties and formation energies of vacancy defects in delafossite CuAlO2 have been investigated by using the first-principles density functional theory. The band structures and density of states of various vacancy defects have been obtained and analyzed. The results show that the V Cu systems with different charge states influence the type of conductivity. The introduced vacancy defects enhance the hybridization between O-2p and Cu-3d states, which is good for p-type conductivity. The calculated formation energies indicate that the Cu vacancy is relatively easy to form and it trends to have positive charge.  相似文献   

11.
Composite cathode material LiFePO4–Li3V2(PO4)3 is synthesized through a chemical reduction and lithiation using FeVO4·xH2O as both iron and vanadium sources. The structural properties of LiFePO4–Li3V2(PO4)3 are investigated. X-ray diffraction results show the composite material containing olivine type LiFePO4 and monoclinic Li3V2(PO4)3 phases. High-resolution transmission electron microscopy and energy-dispersive X-ray spectrometry results indicate that mutual doping effects take place between the LiFePO4 and Li3V2(PO4)3 particles with V3+ doping the LiFePO4 while Fe2+ dopes the Li3V2(PO4)3. LiFePO4–Li3V2(PO4)3 nanocomposites are formed in the carbon webs. There is no structural compatibility between monoclinic (Li3V2(PO4)3) and olivine (LiFePO4) domains in composite material LiFePO4–Li3V2(PO4)3.  相似文献   

12.
The role of iron in Na 1.5Fe 0.5Ti 1.5(PO 4)3/C electrode material for Na batteries has been studied by 57Fe Mössbauer spectroscopy in operando mode. The potential profile obtained in the galvanostatic regime shows three plateaus at different voltages due to different reaction mechanisms. Two of them, at 2.2 and 0.3 V vs Na +/Na 0, have been associated to redox processes involving iron and titanium in Na 1.5Fe 0.5Ti 1.5(PO 4)3. The role of titanium was previously elucidated for NaTi 2(PO 4)3 and the effect of the substitution of Fe for Ti was investigated with 57Fe Mössbauer spectroscopy. We show that iron is an electrochemically active center at 2.2 V with the reversible Fe 3+/Fe 2+ transformation and then remains at the oxidation state Fe 2+ along the sodiation until the end of discharge at 0 V.  相似文献   

13.
Composite solid electrolytes in the system (1???x)Li2CO3xAl2O3, with x?=?0.0–0.5 (mole), were synthesized by a sol–gel method. The synthesis carried out at low temperature resulted in voluminous and fluffy products. The obtained materials were characterized by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy/energy-dispersive X-ray, Fourier transform infrared spectroscopy and AC impedance spectroscopy. Structural analysis of the samples showed an amorphous feature of Li2CO3 and traces of α-LiAlO2, γ-LiAlO2 and LiAl5O8. The prepared composite samples possess high ionic conductivities at 130–180 °C on account of the presence of lithium aluminates as well as the formation of a high concentration of an amorphous phase of Li2CO3 via this sol–gel preparative technique.  相似文献   

14.
We investigate the kinetics of photodarkening and recording of holographic diffraction gratings in amorphous As4S3Se3 thin-film structures doped with tin (Sn) in concentrations of 0–10 at %. It is established that an increase in the Sn concentration leads to a decrease in the photodarkening rate and degree. The photodarkening kinetics is approximated by a stretched exponential function. It is found that an increase in the Sn concentration leads to a decrease in the transmission (photodarkening) variation in the investigated As4S3Se3–Sn films. It is determined that, in the recording of holographic diffraction gratings at a Sn concentration of 3–8 at %, the As4S3Se3–Sn films exhibit the maximum sensitivity and diffraction efficiency of the recorded gratings. It is shown that the dependence of diffraction efficiency on the As4S3Se3 film thickness has the maximum at a film thickness of 4 µm.  相似文献   

15.
The compounds [Fe(qsal)2]X (X = Cl, SCN, CF3SO3) were synthesized and investigated by electron paramagnetic resonance (EPR). The dependence of the Fe(III) spin state on the type of counterion X and on the temperature was established. On the basis of the density functional calculations, the geometrical parameters of compounds in high- and low-spin states were optimized and the difference in their internal energies was calculated. A correlation between the experimental EPR data and the theoretically calculated energy difference between the high-spin and the low-spin states of the compounds with different anions was obtained.  相似文献   

16.
Wei Yuan  Ji Yan  Zhiyuan Tang  Li Ma 《Ionics》2012,18(3):329-335
A novel ultrasonic-assisted sol–gel method is proposed to prepare Li3V2(PO4)3/C cathode material. X-ray diffraction analyses show that both Li3V2(PO4)3/C(A) synthesized by the ultrasonic-assisted sol–gel method and Li3V2(PO4)3/C(B) synthesized by a traditional sol–gel method have monoclinic structure. Scanning electron microscopy images indicate that the Li3V2(PO4)3/C(A) composite has a more uniform morphology than that of the Li3V2(PO4)3/C(B) composite. In the voltage range of 3.0–4.3 V (vs. Li/Li+), the initial specific discharge capacities of the Li3V2(PO4)3/C(A) and Li3V2(PO4)3/C(B) samples are 129.8 and 125.9 mAh g−1 at 1C rate (1C = 133 mA g−1), respectively. Furthermore, at 2-C charge/10-C discharge rate, the specific discharge capacity of the Li3V2(PO4)3/C(A) composite retains 113.2 mAh g−1 after 50 cycles, but the Li3V2(PO4)3/C(B) composite only presents a capacity of 94.8 mAh g−1.  相似文献   

17.
A new polyanionic cathode material, Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C for lithium-ion batteries, was synthesized using a sol-gel method and with N,N-dimethyl formamide as a dispersion agent. The analysis of electron transmission spectroscopy and X-ray diffraction revealed that the composite contained two phases. The material has high crystallinity with a grain size of 20–50 nm. The valence states of Mn, V, and Fe in the composite were analyzed by X-ray photoelectron spectroscopy. The electrochemical kinetics in Li3V2(PO4)3 is effectively enhanced by the incorporation of LiMnPO4 and LiFePO4, via structure modification and reduced Li diffusion length. The Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C materials displayed high rate capacity and steady cycle performance with discharge capacity remained 148 mAh g?1 after 50 cycles at the rate of 0.2C. In particular, the composite exhibited excellent reversible capacities, with the values of 157, 134, 120, 102, and 94 mAh g?1 at charge/discharge 0.2, 0.5, 1, 2, and 5C rates, respectively.  相似文献   

18.
Hybrid ceramics consisting of hydroxyapatite Ca10(PO4)6(OH)2 and ferrite Fe3O4 were synthesized using a two-stage procedure. The first stage included the synthesis of Fe3O4 ferrite particles by co-precipitation and the synthesis of hydroxyapatite. In the second stage, the magnetic hybrid hydroxyapatite–ferrite bioceramics were synthesized by a thorough mixing of the obtained powders of carbonated hydroxyapatite and Fe3O4 ferrite taken in a certain proportion, pressing into tablets, and annealing in a carbon dioxide atmosphere for 30 min at a temperature of 1200°C. The properties of the components and hybrid particles were investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Mössbauer spectroscopy. The saturation magnetization of the hybrid ceramic composite containing 20 wt % Fe3O4 was found to be 12 emu/g. The hybrid hydroxyapatite (Ca10(PO4)6(OH)2)–ferrite Fe3O4 ceramics, which are promising for the use in magnetotransport and hyperthermia treatment, were synthesized and investigated for the first time.  相似文献   

19.
We investigated the thermal transition of coated nano-particles of the title compound, on a set of samples of average diameter ⟨d⟩ ~ 30, 50, 70, 110 nm, with rather broad size distributions. As expected, the width of the major hysteresis loop was an increasing function of ⟨d⟩. We recorded first-order reversal curves (FORC), the initial parts of which displayed a finite slope, revealing the presence of reversible contributions expected from particles smaller than the critical size d C associated with the collapse of the hysteresis loop. Kinetic effects were also evidenced thanks to isothermal stages. Reversibility of the FORC curves at the vicinity of the reversal temperature was controlled. Thanks to the reversibility property we could determine the reversible contributions to the total response of all samples and derive the corresponding d C values. Consistent results were obtained by accounting for an anhysteretic contribution from the large particles, leading to an accurate determination d C  ~ 45−50 nm, much better than the width of the size distributions.  相似文献   

20.
5LiFePO4⋅Li3V2(PO4)3/C composite cathode material is synthesized by a polyethylene glycol (PEG)-assisted rheological phase method. As a surfactant and dispersing agent, PEG can effectively inhabit the aggregation of colloidal particles during the formation of the gel. Meanwhile, PEG will coat on the particles to play the role of carbon source during the sintering. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy, and electrochemical methods. XRD results indicate that the 5LiFePO4⋅Li3V2(PO4)3/C composites are well crystallized and contain olivine-type LiFePO4 and monoclinic Li3V2(PO4)3 phases. The composite synthesized at 650 °C exhibits the initial discharge capacities of 134.8 and 129.9 mAh g−1 and the capacity retentions of 96.2 and 97.1 % after 50 cycles at 1C and 2C rates, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号