首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
A series of CdSe and CdSe/CdS quantum dots (QDs) labeled with amino acid-modified β-cyclodextrin (β-CD) was prepared by a simple ultrasonic method. These amino acid-modified β-CD-coated QDs are very soluble and stable in biological buffer. They also have high colloidal stability and strong optical emission properties that are similar to those of untreated tri-n-octylphosphine oxide (TOPO)-coated QDs. The quantum yields (QYs) of these amino acid-modified β-CD-coated CdSe and CdSe/CdS QDs in biological buffer were found to be very high. In particular, the QYs of the positively charged l-His-β-CD-coated CdSe/CdS QDs were as high as 33.5±1.8%. In addition, the fluorescence lifetime of these QDs was also very long in PBS solutions as determined by frequency domain spectroscopy. For example, the lifetime of l-His-β-CD-coated CdSe/CdS QDs was 8.6 ns. The in vitro cytotoxicity of these QDs in ECV-304, SH-SY5Y and HeLa cells was found to be lower. l-His-β-CD-coated CdSe/CdS QDs were the least cytotoxic (IC50 95.6±3.2 mg mL?1 in ECV-304 cells after 48 h). The flow cytometry results show that the positively charged amino acid led to a considerable increase in biocompatibility of QDs. This may be attributed to the presence of an amino acid-modified β-CD outer layer, which enhanced the biocompatibility.  相似文献   

2.
The itaconic acid/methacrylic acid (PIA-MAA) copolymer ligand (PIA-MAA) with carboxylate anchoring groups was found to efficiently convert CdSe/CdS core-shell quantum dots (QDs) in chloroform to water-soluble PIA-MAA-ligand stabilized nanocrystals (PIA-MAA-QDs). The quantum yield (QY) of the resulting PIA-MAA-QDs was 24%. In addition, the carboxylate-based PIA-MAA-QDs survived UV irradiation in air for at least 16 days. Upon UV irradiation, the PIA-MAA-QDs became about 2 times brighter than the original CdSe/CdS QDs in chloroform, and the UV-brightened photoluminescence (PL) can retain the brightness for at least several months. Experimental results further confirmed that the PIA-MAA-QDs were more stable than the original CdSe/CdS QDs against strong acid, strong oxidant, photochemical and thermal treatments. The PIA-MAA-QDs were soluble and stable in water, some polar solvents and buffer solutions. In addition to good performance of PIA-MAA-QDs, the synthesis of PIA-MAA ligands and the corresponding water-soluble QDs is relatively simple.  相似文献   

3.
CdS/CdSe co-sensitizers on TiO2 films were annealed using a two-step procedure; high temperature (300 °C) annealing of TiO2/CdS quantum dots (QDs), followed by low temperature (150 °C) annealing after the deposition of CdSe QDs on the TiO2/CdS. For comparison, two types of films were prepared; CdS/CdSe-assembled TiO2 films conventionally annealed at a single temperature (150 or 300 °C) and non-annealed films. The 300 °C-annealed TiO2/CdS/CdSe showed severe coalescence of CdSe QDs, leading to the blocked pores and hindered ion transport. The QD-sensitized solar cell (QD-SSC) with the 150 °C-annealed TiO2/CdS/CdSe exhibited better overall energy conversion efficiency than that with the non-annealed TiO2/CdS/CdSe because the CdSe QDs annealed at a suitable temperature (150 °C) provided better light absorption over long wavelengths without the hindered ion transport. The QD-SSC using the two-step annealed TiO2/CdS/CdSe increased the cell efficiency further, compared to the QD-SSC with the 150 °C-annealed TiO2/CdS/CdSe. This is because the 300 °C-annealed, highly crystalline CdS in the two-step annealed TiO2/CdS/CdSe improved electron transport through CdS, leading to a significantly hindered recombination rate.  相似文献   

4.
An efficient photoelectrode is fabricated by sequentially assembled CdS and CdSe quantum dots (QDs) onto a ZnO-nanowire film. As revealed by UV-vis absorption spectrum and scanning electron microscopy (SEM), CdS and CdSe QDs can be effectively adsorbed on ZnO-nanowire array. Electrochemical impedance spectroscopy (EIS) measured demonstrates that the electron lifetime for ZnO/CdS/CdSe (13.8 ms) is calculated longer than that of ZnO/CdS device (6.2 ms), which indicates that interface charge recombination rate is reduced by sensitizing CdSe QDs. With broader light absorption range and longer electron lifetime, a power conversion efficiency of 1.42% is achieved for ZnO based CdS/CdSe co-sensitized solar cell under the illumination of one Sun (AM 1.5G, 100 mW cm−2).  相似文献   

5.
首次用谷胱甘肽(GSH)作为稳定剂,在水溶液中制备了稳定地发射绿色荧光和橙色荧光的两种 CdSe/CdS核/壳结构的纳米量子点。用紫外-可见分光光度和荧光光谱方法研究了CdSe/CdS量子点的发光特性。透射电镜(TEM)结果表明CdSe/CdS量子点近似球形,在水中分散性良好,比CdSe量子点具有更优异的发光特性,发射光谱和吸收光谱都有红移现象。将CdSe/CdS量子点与鼠抗人CD3抗体连接,制备了水溶性CdSe/CdS-CD3复合物探针,对人血淋巴细胞进行标记和成像。结果表明用该探针对人血淋巴细胞成像清晰,其荧光在30 min的连续蓝光激发下无明显衰退,而FITC荧光在20 min内基本完全猝灭。  相似文献   

6.
利用飞秒泵浦探测技术对CdSe/CdS/ZnS量子点体系中的超快载流子动力学过程进行了研究. 通过选择不同波长的泵浦光分别激发样品壳层和核层,研究了载流子在壳层和核层中的超快动力学过程. 实验结果表明,载流子在CdS壳层导带中弛豫过程非常迅速(约130 fs),时间明显短于载流子在CdSe核层导带中的弛豫时间(约400 fs). 实验中也发现在CdS壳层和CdSe核层的分界面存在一定量的缺陷态.  相似文献   

7.
Russian Physics Journal - Nanocomposites based on PMMA and CdSe, CdSe/CdS quantum dots were developed. Quantum dots (QD) of CdSe, CdSe/CdS with sizes from 2.0 nm to 4.0 nm were obtained by...  相似文献   

8.
The photostability is an outstanding feature of quantum dots (QDs) used as fluorescence probes in biological staining and cell imaging. To find out the related factors in the QD photostability, the photobleaching of naked CdTe QDs and BSA coated CdSe/CdS/ZnS QDs in human hepatocellular carcinoma (QGY) cells and human nasopharynx carcinoma (KB) cells were studied under single photon excitation (SPE) and two-photon excitation (TPE). In these two cell lines the cellular QDs were irradiated by a 405 nm continuous wave laser for SPE or an 800 nm femto-second (fs) laser for TPE. The QD photobleaching with the irradiation time was found to fit a biexponential decay. The fast decay plays a dominant role in the bleaching course and thus can be used as the parameter to quantitatively evaluate the QD photostability. The TPE decreased the QD photobleaching as compared to SPE. The BSA coated core/shell QDs had improved the photostability up to 4-5 times than the naked QDs due to the shielding effect of the QD shell. Therefore, it is better to use core/shell structured QDs as the fluorescence probe combining with a TPE manner for those long-term monitoring studies.  相似文献   

9.
ZnS:Ag/CdS quantum dots (QDs) have been synthesized by a reverse micelle process under ambient environment. Excited by 350?nm, the emission peak of ZnS:Ag/CdS QDs changes from 425 to 625?nm with increasing the thickness of CdS shells. Although the quantum yields of QDs decrease with CdS shells thickening, the luminescent brightness remains stable throughout. Compared with the traditional color-tunable CdSe QDs, the synthesis of ZnS:Ag/CdS QDs is less toxic and more economic. Therefore, this synthesis process can be regarded as an efficient way to fabricate a series of luminescent nanostructures for a variety of applications.  相似文献   

10.
A convenient and non-TOP-based route for the synthesis of core-shell CdSe/CdS quantum dots (QDs) is developed for the first time. Simple reagents, such as cadmium oxide, selenium powder, sodium sulfide, paraffin and oleic acid with obvious advantages are used to replace organometallics. This simple route allows the preparation of a series of core-shell CdSe/CdS QDs emitting in a wide wavelength range (from 510 to 615 nm). After passivation of CdSe by CdS shell using sodium sulfide as the source of sulfur at 80 °C, the quantum yields (QYs) are improved from 15-30% to 35-50% and remained stable at least for 4 months. A narrow bandwidth (FWHM<50 nm) indicates that the as-prepared QDs have uniform size distribution, desirable dispersibility and good fluorescence properties. The whole procedure can be carried out either open to air or under nitrogen atmosphere, which is simpler, greener and cheaper as compared with TOP-based route.  相似文献   

11.
Poly(amidoamine) (PAMAM) dendrimers containing disulfide cores (i.e., cystamine) and possessing carboxylic acid or hydroxyl terminal groups were reduced with dithiothreitol (DTT) to yield single site, thiol core, functionalized PAMAM dendron reagents. These thiol functionalized dendron reagents were used to surface modify (dendronize) both gold nanoparticles, as well as CdSe/CdS (core-shell) quantum dots (QDs). Dendronization involved self-assembly of the focal point thiol functional dendrons at the metal interface of both gold and CdSe/CdS QDs by ligand exchange of protective surfactants used for their synthesis. The synthesis, characterization and preliminary luminescence studies of these new dendritic hybrids are reported.  相似文献   

12.
Quasi core shell alloyed CdSeS quantum dots (QDs) have been prepared through a facile aqueous-phase route employing microwave irradiation technique. The optical spectroscopy and structure characterization evidenced the quasi core shell alloyed structures of CdSeS QDs. The X-ray diffraction patterns of the obtained CdSeS QDs displayed peak positions very close to those of bulk cubic CdS crystal structures and the result of X-ray photoelectron spectroscopy data re-confirmed the thick CdS shell on the CdSe core. The TEM images and HRTEM images of the CdSeS QDs ascertained the well-defined spherical particles and a relatively narrow size distribution. On the basis, the stability of the obtained QDs in an oxidative environment was also discussed using etching reaction by H2O2. The experiments result showed the as-prepared QDs present high tolerance towards H2O2, obviously superior to the commonly used CdTe QDs and core-shell CdTe/CdS QDs, which was attributed to the unique quasi core-shell CdSeS crystal structure and the small lattice mismatch between CdSe and CdS semiconductor materials. This assay provided insight to obtain high stable crystal structured semiconductor nanocrystals in the design and synthesis process.  相似文献   

13.
Hybrid nanostructures of quantum dots(QDs) and metallic nanostructure are attractive for future use in a variety of optoelectronic devices. For photodetection applications, it is important that the photoluminescence (PL) of QDs is quenched by the metallic nanostructures. Here, the quenching efficiency of CdSe/ZnS core-shell quantum dots (QDs) with different sized gold nanoparticles (NPs) films through energy transfer is investigated by measuring the PL intensity of the hybrid nanostructures. In our research, the gold NPs films are formed by the post-annealing of the deposited Au films on the quartz substrate. We find that the energy transfer from the QDs to the Au NPs strongly depends on the sizes of the Au NPs. For CdSe/ZnS QDs direct contact with the Au NPs films, the largest energy transfer efficiency are detected when the resonance absorption peak of the Au NPs is nearest to the emission peak of the CdSe/ZnS QDs. However, when there is a PMMA spacer between the QDs layer and the Au NPs films, firstly, we find that the energy transfer efficiency is weakened, and the largest energy transfer efficiency is obtained when the resonant absorption peak of the Au NPs is farthest to the emission peak wavelength of CdSe/ZnS QDs. These results will be useful for the potential design of the high efficiency QDs optoelectronic devices.  相似文献   

14.
Characterization of samples of cadmium selenide quantum dots (CdSe) QDs dissolved in toluene colloidal solutions at a concentration of 1.4 mg/ml was carried out through UV–Vis absorption and photoluminescence (PL) spectroscopy. The size-dependent absorption and red-shifted PL emission peak wavelengths could be tuned between 510–576 and 545–606 nm respectively. Optical absorption spectral measurements yielded CdSe QDs having diameters about ~ 2.44–3.69 nm with energy gaps 2.32–2.08 eV which are higher than the bulk CdSe (1.74 eV) reminiscent of quantum confinement. This is found to be in good agreement with the semi-empirical pseudopotential model. In addition, the first excitonic absorption transition 1S(e)1S3/2(h) oscillator strength and the corresponding fluorescence radiative decay time of CdSe QDs are assessed using relevant Einstein relations for absorption and emission in a two-level system. The elaborated calculations would anticipate that the transition oscillator scale with the CdSe QD radius as ~ R2.54. Correspondingly, the calculated radiative decay times decrease from 56.4 to 23.2 ns which scale with CdSe QDs radius as ~ R?2.155 in fairly good agreement with experimental values reported in the literature.  相似文献   

15.
The photoinduced hole transfer dynamics from CdSe quantum dots (QDs), shelled with ZnS or CdS/CdZnS/ZnS layers, to organic hole transporting materials (HTMs) is investigated by absorption, steady-state and time-resolved photoluminescence (PL) spectroscopy. The PL intensity and lifetime of the QDs are dramatically quenched when HTMs are added into the dilute QD solution. The quenching efficiency of the QDs significantly decreases with increasing the shell thickness and increases with decreasing the oxidation potential of the HTMs. These facts are correlated with the photoinduced hole transfer from the QDs to the HTMs. The above results are helpful in understanding the photoexcitation dynamics-related phenomena of organic molecule conjugated nano-object.  相似文献   

16.
高小钦  卓宁泽  王海波  崔一平  张家雨 《物理学报》2015,64(13):137801-137801
以CdSe, CuInS2和CdS:Mn量子点为例, 本文基于量子点白光LED器件的电光转换过程, 引入量子点的“类”光谱光效率函数, 给出了该器件的色坐标、光效和量子点配比等计算公式, 理论计算结果和实验结果基本一致. 研究结果表明量子点的荧光峰位和峰宽对白光器件的显色指数有显著影响.  相似文献   

17.
CdSe quantum dots (QDs) prepared using an aqueous sodium selenosulphite and N,N′-dimethylformamide (DMF) in commercial polymethylmethacrylate (PMMA) showed excellent optical properties. Tuning of the absorption and emission wavelengths by varying the selenium concentration with respect to cadmium is studied. As-prepared CdSe quantum dots showed absorption band at 405 nm (3.06 eV) associated with the formation of ‘early-stage’ CdSe nano-particles along with weak absorption at 480–90 nm due to continuous growth of the particles. The blue-green and yellow-green light emissions were observed from as-prepared solutions. Photoluminescence (PL) measurement showed band-edge emissions at around 430 nm for small clusters but a more stable emission at 544 nm for the 1:1 CdSe sample. X-ray diffraction (XRD) pattern of the CdSe/PMMA powder with Cd/Se ratio of 1:1 showed broad pattern for cubic CdSe. Transmission electron microscopy (TEM) showed cube like de-shaped spherical dots in the region of about 5 nm.  相似文献   

18.
Semiconductor quantum dots (QDs) exhibit intense luminescence and reproduce optical characteristics. Doping with metal ions has a positive effect on their properties. Introduction of QDs into polymer matrices leads to the formation of a required morphology of composites. There is a problem in synthesis of optically transparent polymer composites containing QDs of the А2В6 group that consists in the extremely low solubility of metal chalcogenides and most of their precursors in monomers. To solve this problem, we used colloidal synthesis. CdS QDs were synthesized by the method of appearing reagents in situ in methylmethacrylate (MMA). Doping with Ag+ ions was performed by adding a silver salt into the reaction mixture during the synthesis of CdS QDs. The PMMA/CdS:Ag luminescent polymer glasses were synthesized by radical block polymerization of MMA. The transparency of the composites at wavelengths exceeding 500 nm reaches 92% (5 mm). The luminescence excitation is related to the interband electron transitions in CdS crystals. Luminescence in the range of 500–600 nm is observed due to electron relaxation via a system of levels in the band gap of doped CdS crystals. The positions and intensities of the spectral bands depend on the Ag+ concentration, particle size, excitation wavelength, and other factors. The formation of Cd(Ag)S/Ag2S structures at Ag+ concentrations higher than 5.0 × 10–3 mol/L quenches the luminescence.  相似文献   

19.
The paper presents the original study of photoluminescence (PL) and Raman scattering spectra of core–shell CdSe/ZnS quantum dots (QDs) covered by the amine-derivatized polyethylene glycol (PEG) with luminescence interface states. First commercially available CdSe/ZnS QDs with emission at 640 nm (1.94 eV) covered by PEG polymer have been studied in nonconjugated states. PL spectra of nonconjugated QDs are characterized by a superposition of PL bands related to exciton emission in a CdSe core and to the hot electron–hole recombination via high energy luminescence states. The study of high energy PL bands in QDs at different temperatures has shown that these PL bands are related to luminescence interface states at the CdSe/ZnS or ZnS/polymer interface. Then CdSe/ZnS QDs have been conjugated with biomolecules—the Osteopontin antibodies. It is revealed that the PL spectrum of bioconjugated QDs changed essentially with decreasing hot electron–hole recombination flow via luminescence interface states. It is shown that the QD bioconjugation process to Osteopontin antibodies is complex and includes the covalent and electrostatic interactions between them. The variation of PL spectra due to the bioconjugation is explained on the basis of electrostatic interaction between the QDs and biomolecule dipoles that stimulates re-charging QD interface states. The study of Raman scattering of bioconjugated CdSe/ZnS QDs has confirmed that the antibody molecules have the electric dipoles. It is shown that CdSe/ZnS QDs with luminescence interface states are promising for the study of bioconjugation effects with specific antibodies and can be a powerful technique in biology and medicine.  相似文献   

20.
Quantum dots' sensitized solar cells (QDSSCs) can create the high-performance and low-cost photovoltaic in the future. In this study, we synthesized the film of TiO2/CdS/CdSe/ZnS photoanodes by successive ionic layer adsorption reaction (SILAR) method. The absorption spectra, photoluminescent spectra and electrochemical impedance spectra (EIS) of the film TiO2/CdS/CdSe/ZnS photoanodes show that the structure of energy levels in the conduction band (CB) of photoanode materials CdS, CdSe, and ZnS quantum dots (QDs) can absorb a great number of photons in each region and inject stimulated electrons quickly into the conduction band (CB) of TiO2. Furthermore, we also studied the influence of the SILAR cycles on the dynamic resistance, the lifetime of electrons in QDSSCs through Nyquist and Bode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号