首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermoelectric properties of n-Bi2 ? x Sb x Te3 ? y ? z Se y S z solid solutions are studied in the temperature range 300–550 K. It is shown that an increase in the parameter β determining the figure-of-merit Z of the material is observed in compositions with the optimally related effective mass of the density of states m/m 0, the carrier mobility μ0, and the lattice thermal conductivity κ L . Within the temperature range 300–350 K, the parameter β and the figure-of-merit Z are found to increase in solid solutions with substitutions in both bismuth telluride sublattices Bi → Sb and Te → Se, S (x = 0.16, y = z = 0.12) for optimum electron concentrations. An increase in the electron concentration and substitutions of atoms only in the tellurium sublattice bring about an increase in the β parameter and the value of Z at higher temperatures. Within the range 350–450 K, the parameters β and Z are observed to increase in a solid solution with a low content of substituted atoms in the tellurium sublattice Te → Se, S for y = z = 0.09 and, at higher temperatures up to 550 K, in compositions with tellurium substituted by selenium only, with increasing content of substituted atoms.  相似文献   

2.
Thermoelectric properties of single crystals of a new dilute magnetic semiconductor p-Sb2 ? x Cr x Te3 are studied in the temperature interval 7–300 K. The temperature dependences of the thermal conductivity are measured. The Seebeck coefficient S is found to increase upon doping with Cr. At low temperatures, a ferromagnetic phase with Curie temperature T C ≈ 5.8 K exists for a Cr concentration x = 0.0215, its easy magnetization axis being parallel to the crystallographic axis C 3. At T = 4.2 K, a negative magnetoresistance and anomalous Hall effect are observed; in strong magnetic fields, the Shubnikov-de Haas effect is manifested.  相似文献   

3.
Resistivity (ρ), thermal conductivity (k) and Seebeck coefficient (S) of La1–xCexB6 single crystals with various concentrations of cerium Ce ions was measured in a wide temperature range 3?300 K. The obtained data were analyzed in the framework of the Coqblin–Shrieffer model. The contributions of scattering of carriers on magnetic ions Ce for all transport parameters ρ(T), k(T), S(T) are revealed. Strong dependence of the magnetic scattering on concentration of the cerium ions are identified. The anomalous behavior of the transport parameters ρ(T), k(T), S(T) in the region near 30 K is attributed to the Δ ~ 30 K splitting of Г8 level.  相似文献   

4.
The need of alternative “green” energy sources has recently renewed the interest in thermoelectric (TE) materials, which can directly convert heat to electricity or, conversely, electric current to cooling. The thermoelectric performance of a material can be estimated by the so-called figure of merit, zT = σ α 2 T/λ (α the Seebeck coefficient, σ α 2 the power factor, σ and λ the electrical and thermal conductivity, respectively), that depends only on the material. In the middle 1990s the “phonon glass and electron crystal” concept was developed, which, together with a better understanding of the parameters that affect zT and the use of new synthesis methods and characterization techniques, has led to the discovery of improved bulk thermoelectric materials that start being implemented in applications. During last decades, special focus has been made on skutterudites, clathrates, half-Heusler alloys, Si1?x Ge x-, Bi2Te3- and PbTe-based materials. However, many other materials, in particular based on intermetallics, pnictides, chalcogenides, oxides, etc. are now emerging as potential advanced bulk thermoelectrics. Herein we discuss the current understanding in this field, with special emphasis on the strategies to reduce the lattice part of the thermal conductivity and maximize the power factor, and review those new potential thermoelectric bulk materials, in particular based on intermetallics, pnictides and chalcogenides. A final chapter, discussing different shaping techniques leading to bulk materials (eventually from nanostructured TE materials), is also included.  相似文献   

5.
The temperature dependence of the Nernst-Ettingshausen coefficient Q(T) in the normal phase of doped HTSCs of the yttrium system was studied. The main features characterizing the behavior of this coefficient were revealed, and the character and mechanism of the effect that various nonisovalent substituents exert on the Q(T) dependence were analyzed. It is shown that the narrow-band model permits one not only to describe all the specific features observed in the Q(T) curves but also to perform a simultaneous quantitative analysis of the temperature dependences of four kinetic coefficients (the electrical resistivity and the Seebeck, Hall, and Nernst-Ettingshausen coefficients) with the use of a common set of model parameters characterizing the band structure and carrier system in the normal phase of an HTSC. This approach was employed to determine the carrier mobilities and the asymmetry of the dispersion curve in the systems studied (YBa2Cu3Oy, y = 6.37–6.91; YBa2Cu3?xCoxOy, x = 0–0.3; Y1?xCaxBa2Cu3Oy, x = 0–0.25; Y1?xCaxBa2?xLaxCu3Oy, x = 0–0.5) and to analyze the effect of the substitutions involved on the variation of these parameters.  相似文献   

6.
The magnetic and galvanomagnetic properties of single crystals of the new diluted magnetic semiconductor p-Sb2?xCrxTe3 (0 ≤ x ≤ 0.02) have been studied in the temperature range 1.7–300 K. A ferromagnetic phase with the Curie temperature Tc ≈ 5.8 K and the maximum Cr content x = 0.0215 has been revealed. The easy magnetization axis is parallel to the C3 crystallographic axis. In the presence of strong magnetic fields, the Shubnikov-de Haas effect has been observed. Analysis of this effect shows that doping with chrome reduces the concentration of holes. Negative magnetoresistance and the anomalous Hall effect are observed at liquid helium temperature.  相似文献   

7.
One-dimensional nanocomposites Zn1–x Co x O1–y С у :nCo3O4 and solid solutions Zn1–x Co x O1–y С у , which are promising photocatalysts for the oxidation of toxic organic compounds in visible light, are obtained via the thermolysis of Zn1–x Co x (HCOO)(OCH2CH2O)1/2 (0.1 ≤ x ≤ 0.5) precursor in a controlled gaseous atmosphere.  相似文献   

8.
We report X-ray diffraction, magnetization and transport measurements for polycrystalline samples of the new layered superconductor Bi4?x Ag x O4S3(0 ≤ x ≤ 0.2). The superconducting transition temperature (T C) decreases gradually and finally suppressed when x < 0.10. Accordingly, the resistivity changes from a metallic behavior for x < 0.1 to a semiconductor-like behavior for x > 0.1. The analysis of Seebeck coefficient shows there are two types of electron-like carriers dominate at different temperature regions, indicative of a multiband effect responsible for the transport properties. The suppression of superconductivity and the increased resistivity can be attributed to a shift of the Fermi level to the lower-energy side upon doping, which reduces the density of states at E F. Further, our result indicates the superconductivity in Bi4O4S3 is intrinsic and the dopant Ag prefers to enter the BiS2 layers, which may essentially modify the electronic structure.  相似文献   

9.
The effect of 5-MeV electron irradiation of p-InxBi2?xTe3 single crystals (x=0, 0.04, 0.07), performed at 250 K, on the galvanomagnetic properties of the crystals was studied. The irradiation was shown to change the conduction from the p to the n type. Annealing at temperatures of 310–390 K restores the conduction to the p type. The reversal of the conduction type and variation of the carrier concentration can be accounted for by an increase in the concentration of charged point radiation defects produced in InxBi2?xTe3 by irradiation. Electron irradiation of p-type Te single crystals reduces the electrical resistivity without reversing the conduction type. Annealing restores the original properties almost completely.  相似文献   

10.
The peculiarities of fundamental optical absorption, thermally stimulated conductivity, and depolarization currents in β-Tl1 ? x CuxInS2 (0 ≤ x ≤ 0.015) single crystals have been investigated in the temperature range 4.2–300 K. It is found that the temperature coefficient of the band gap E g changes near the temperature of the structural phase transition.  相似文献   

11.
The structure of the optical centers of Eu3+ ions in tetragonal (ZrO2)1–xy (Y2O3) x (Eu2O3) y (х = 2.7–3.6; y = 0.1) and cubic (ZrO2)1–xy (Y2O3) x (Eu2O3) y (х = 8–38; y = 0.1–0.5) crystals of solid solutions on the basis of zirconium dioxide is studied using the methods of optical and Raman-scattering spectroscopy. Characteristic optical centers of Eu3+ ions with different crystalline environments are revealed in the above compounds.  相似文献   

12.
The electronic and ionic conductivity, the electronic and ionic Seebeck coefficients, and the thermal conductivity of Na x Cu2 ? x S (x = 0.05, 0.1, 0.15, 0.2) compounds were measured in the temperature range of 20–450 °С. The total cationic conductivity of Na0.2Cu1.8S is about 2 S/cm at 400 °С (the activation energy ≈ 0.21 eV). Over the studied compounds, the composition Na0.2Cu1.8S has the highest electronic conductivity (500–800 S/cm) in the temperature range from 20 to 300 °С, and the highest electronic Seebeck coefficient (about 0.2 mV/K) in the same temperature range is observed for Na0.15Cu1.85S composition; the electronic Seebeck coefficient increases abruptly above 300 °С for all compounds. The thermal conductivity of superionic Na0.2Cu1.8S is low, which causes high values of the dimensionless thermoelectric figure of merit ZT from 0.4 to 1 at temperatures from 150 to 340 °С.  相似文献   

13.
Standard enthalpies of formation for solid solutions of composition Nd1 + x Ba2 ? x Cu3O y (x = 0–0.8, y = 6.65–7.24) from oxides were determined by solution calorimetry. The heat capacity of NdBa2Cu3O6.87 phase was measured in the range 5–320 K by low-temperature adiabatic calorimetry. The absolute entropy S o(T), the difference of enthalpies H o(T)-H o(0 K), and the reduced Gibbs energy Φo(T) = S o(T)–[H o(T)–H o(0)]/T were calculated on the basis of smoothed dependence C p (T) in the 0–320 K range. An assessment was made for the heat capacities and the absolute entropies of solid solutions Nd1+x Ba2?x Cu3O y . The obtained set of thermodynamic parameters can be used for the calculation of phase equilibria in the Nd-Ba-Cu-O system.  相似文献   

14.
High-precision measurements of thermopower have been performed in a wide temperature range (2–300 K) for a series of cerium-based heavy-fermion compounds, including CeB6, CeAl3, CeCu6, and substitutional solid solutions of the CeCu6 ? x Au x system (x = 0.1, 0.2). All compounds exhibit an unusual (logarithmic) asymptotic behavior of the temperature dependence of the Seebeck coefficient: S ∝ ?lnT. In the case of cerium hexaboride, this anomalous behavior of S(T) is accompanied by the appearance of weak-carrier-localization-mode asymptotics in the conductivity (σ(T) ∝ T 0.39), while the paramagnetic susceptibility χ(T) and the effective mass of charge carriers m eff(T) vary according to a power law (χ(T), m eff(T) ∝ T ?0.8) in the temperature interval T = 10–80 K. This behavior corresponds to renormalization of the density of states at the Fermi level. The observed anomalous behavior of thermopower in CeB6 and other cerium-based intermetallic compounds is attributed to the formation of heavy fermions (many-body states in the metal matrix) at low temperatures.  相似文献   

15.
This paper reports on the results of investigations into the structural, electrical, and thermoelectrical properties of sulfides Co x Mn1 ? x S (0 ≤ x ≤ 0.4) in the temperature range 80–950 K. It is established that the thermopower coefficient α decreases significantly with an increase in the cobalt concentration in the lattice of the α-MnS compound. The Co x Mn1 ? x S compounds with cobalt concentrations in the range 0 ≤ x ≤ 0.3 are semiconductors with hole conduction (α > 0), whereas the compound with x = 0.4 exhibits metallic conduction (α < 0). It is found that the band gap E g of the compounds under investigation varies in the range from 1.46 eV for α-MnS (x = 0) to 0.26 eV for Co x Mn1 ? x S (x = 0.4).  相似文献   

16.
The temperature dependence of the Hall coefficient of a single crystal of the p-Sb2Te2.9Se0.1 solid solution grown by the Czochralski technique is studied in the temperature range 77–450 K. The data on the Hall coefficient of the p-Sb2Te2.9Se0.1 are analyzed in combination with the data on the Seebeck and Nernst–Ettingshausen effects and the electrical conductivity with allowance for interband scattering. From an analysis of the temperature dependences of the four kinetic coefficients, it follows that, at T < 200 K, the experimental data are qualitatively and quantitatively described in terms of the one-band model. At higher temperatures, a complex structure of the valence band and the participation of the second-kind additional carriers (heavy holes) in the kinetic phenomena should be taken into account. It is shown that the calculations of the temperature dependences of the Seebeck and Hall coefficients performed in the two-band model agree with the experimental data with inclusion of the interband scattering when using the following parameters: effective masses of the density of states of light holes md1*≈ 0.5m0 (m0 is the free electron mass) and heavy holes md2*≈ 1.4m0, the energy gap between the main and the additional extremes of the valence band ΔEv ≈ 0.14 eV that is weakly dependent on temperature.  相似文献   

17.
The ion conductivity, crystal structure, and multifractal parameters of the sections of grain boundaries in CuCr1?x V x S2 superionic conductors with 0 ≤ x ≤ 0.3 have been investigated. It is established that an increase in the surface area of grain boundaries and complication of their shape in such compounds facilitate ion transport. The effect of crystal structure peculiarities on the grain structure of these compounds has been revealed.  相似文献   

18.
The dielectric properties of layered crystals of CuInP2(SexS1?x)6 solid solutions are studied at x = 0.02, 0.05, 0.20, and 0.40. At a low selenium content (x ≤ 0.05), the solid solutions undergo a transition to the phase with short-range polar order. This transition manifests itself as a diffuse maximum in the temperature dependence of the permittivity ε′(T). Ferroelectric ordering in the solid solutions under investigation is suppressed at x > 1. It is assumed that the structural disordering initiated by the substitution of atoms in the anion sublattice of the solid solutions at 0.1 < x < 0.75 leads to the formation of the state of structured glass. The dielectric relaxation dispersion observed in the radio-frequency range at temperatures of 80–140 K is associated with the freezing of the relaxation dynamics of individual copper atoms.  相似文献   

19.
Magnetic and galvanomagnetic properties of single crystals of a new dilute magnetic semiconductor p-Sb2?xCrxTe3 (x = 0, 0.0115, 0.0215) are investigated in a temperature range of 1.7–300 K. A ferromagnetic phase with a Curie temperature of TC ≈ 5.8 (x = 0.0215) and 2.0 K (x = 0.0115) is detected. The easy magnetization axis is parallel to the C3 crystallographic axis. Analysis of the Shubnikov-de Haas effect observed in these crystals in strong magnetic fields leads to the conclusion that the hole concentration decreases as a result of doping with Cr. Negative magnetoresistance and the anomalous Hall effect are observed in Cr-doped samples at liquid helium temperature.  相似文献   

20.
Epitaxial c-oriented Bi2Te3 films 1.2 μm in thickness are grown by the hot wall method for a low supersaturation of the vapor phase over the surface of mica substrates. The hexagonal unit cell parameters a = 4.386 Å and c = 30.452 Å of the grown films almost coincide with the corresponding parameters of stoichiometric bulk Bi2Te3 crystals. At T = 100 K, the Hall concentration of electrons in the films is on the order of 8 × 1018 cm?3, while the highest values of the thermoelectric coefficient (α ≈ 280 μV K?1) are observed at temperatures on the order of 260 K. Under impurity conduction conditions, conductivity σ of the films increases upon cooling in inverse proportion to the squared temperature. In the temperature range 100–200 K, thermoelectric power parameter α2σ of Bi2Te3 films has values of 80–90 μW cm?1 K?2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号