首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper explains the modulation instability of two surface magnetostatic spin waves simultaneously propagating in a ferromagnetic film. Self-modulation of the spin waves appears when their power reaches a threshold, and this is a sign of cross-phase modulation. The parameters of the unstable process are calculated, and the gains of the perturbation amplitudes are determined. The results published earlier on the experimental detection of the cross-phase modulation of spin waves are explained. Zh. éksp. Teor. Fiz. 116, 2058–2068 (December 1999)  相似文献   

2.
The wave front reversal (WFR) of non-reciprocal waves has been investigated. The experiment was performed using surface magnetostatic waves (SMSW) excited by a pulsed microwave signal of the carrier frequency ∼4.7 GHz in an epitaxial yttrium–iron garnet (YIG) film. The WFR was realized by pulsed parametric pumping of a double frequency. It was shown that WFR with high efficiency can be achieved for SMSW having relatively small wavenumbers k∼102 rad/cm.  相似文献   

3.
It is shown that unlike undamped waves, the dispersion characteristics of spin surface waves with dissipation have a maximum wave number at which there is a downward reversal in the dispersion curve of a wave number. This forms the upper branch of a dispersion curve with inverse dispersion and high attenuation, leading to an unclear frequency dependence of the wave vector. The lower primary dispersion branch corresponds to waves with forward dispersion, and attenuation is proportional to the small parameter of dissipation. However, the coefficient of wave attenuation grows sharply near the maximum wave number. Some angular and frequency limits of surface wave propagation change as well.  相似文献   

4.
In this Letter,we report an Airy-like beam of magnetostatic surface spin wave(Ai BMSSW)supported on the ferromagnetic film,which is transferred from the optical field.The propagation properties of Ai BMSSW were verified with micromagnetic simulation.From simulation results,the typical parabolic trajectory of the Airy-type beam was observed with an exciting source encoding 3/2 phase pattern.The simulation results coincide well with design parameters.Furthermore,simulated results showed that the trajectories of the Ai BMSSW could be tuned readily with varied external magnetic fields.This work can extend the application scenario of spin waves.  相似文献   

5.
We present a theoretical and experimental investigation of Bragg scattering of surface magnetostatic waves (SMSW) by a time-independent, spatially periodic magnetic field when the wave orientation is arbitrary with respect to the magnetization field. In the theoretical section the theory of single-mode Bragg diffraction is generalized to the case of waves with arbitrary dispersion propagating through an anisotropic medium. The calculated results are, on the whole, supported by experimental measurements on SMSW. We demonstrate that a geometry which in isotropic media leads to a sinusoidal distribution of diffraction order amplitudes as a function of penetration into the differing lattice, can lead to a nearly exponential distribution of such amplitudes in anisotropic media. The anisotropy of the interaction between SMSW and the magnetic diffracting lattice is manifested by anomalously high scattering efficiencies for certain cases of relative orientation.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 76–85, November, 1988.  相似文献   

6.
Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, Vol. 32, No. 11, pp. 1422–1429, November, 1989.  相似文献   

7.
A theoretical analysis is made of the propagation of a nonlinear surface magnetostatic wave in a planar ferrite semiconductor structure as a function of the carrier concentration in the semiconductor layer. It is shown that for certain concentrations the surface magnetostatic wave is unstable with respect to longitudinal perturbations and may propagate perpendicular to the magnetic field in the form of solitons. Zh. Tekh. Fiz. 69, 119–121 (June 1999)  相似文献   

8.
The four-magnon instability of magnetostatic surface waves (MSSWs) in yttrium iron garnet epitaxial films is investigated experimentally. It is shown that four-magnon instability for MSSWs with wave numbers 30–600 cm−1 is a decay instability and develops for values of the wave magnetization close to the threshold level for second-order parametric instability of a homogeneous transverse pump wave. When the supercriticality of the MSSW power is 15–20 dB, the generated parametric spin waves themselves become unstable with respect to the four-magnon interaction, so that kinetic instability develops in the film. It is shown that the pump signal transmitted through the signal and the length of the “nonlinear” part of the film, where a MSSW is capable of exciting parametric spin waves, increase as the pump power is increased. Fiz. Tverd. Tela (St. Petersburg) 38, 330–338 (February 1997)  相似文献   

9.
The nonlinear susceptibilities of uniaxially anisotropic ferromagnets are obtained analytically. The expressions show that the anisotropy effect on the first- and second-order components means just an increased H1a (the first-order anisotropy field) of the dc field H0 along the anisotropy axis, but the third-order components are complicated and new terms appear. Applying the above results to surface magnetostatic waves in the films, we find new magnetostatic modes from the joint effect of the anisotropy and nonlinearity since higher powers of frequency are introduced in the dispersion equation by the nonlinearity and anisotropy. Very obvious non-reciprocity is seen from the dispersion curves.  相似文献   

10.
An electrodynamic model that describes the dispersion of magnetostatic surface waves in ferrite/superconductor structures is suggested. On its basis, a new approach to determining the microwave sheet resistance R S of superconducting films in a magnetic field is elaborated. The values calculated (R S =0.20–0.96 mΩ) agree with results obtained by the Tauber method. For YIG/YBCO structures, the controllable phase shift is about 1.5π when the depth of magnetostatic wave penetration into the YBCO film varies from 2.0 to 0.8 μm.  相似文献   

11.
The propagation of magnetostatic waves in a waveguide ferromagnetic channel formed by exposing a ferromagnetic film to a step bias is simulated. Both weak and strong channel couplings are considered. The dispersion characteristics and the distributions of wave functions are calculated. It is shown that the amplitudes of “half-waves” fitting into the channel width alternately increase and decrease with increasing frequency and the half-waves pass into the channel with the largest bias.  相似文献   

12.
The general propagation characteristics of magnetostatic surface waves guided by a single interface of a semi-infinite nonlinear dielectric cover and a ferromagnetic substrate (YIG) have been derived. The nonlinear dielectric cover has intensity dependent refractive indices. The magnetostatic approximation is considered and retardation is ignored in describing the electromagnetic fields in the structure. The used magnetostatic approximation is leading to new waves and might be called nonlinear magnetostatic surface waves. The propagation of these waves is non-reciprocal in contrast to the linear magnetostaic surface waves, which had been only found in the negative direction of propagation.  相似文献   

13.
The Bragg interaction of surface magnetostatic waves with periodic granular HTSC structure has been investigated. The dispersion equation for the coupled waves has been obtained. Resonant absorption of waves near the critical temperature involving the granular structure of the superconductor has been found. The possibility of using the observed effect for making frequency-selective structures and high-speed bolometric photodetectors is shown. Tomsk University. Radio Electronic and Control Systems. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 94–98, October, 1997.  相似文献   

14.
We present a detailed study of the dispersion properties of surface magnetostatic waves in layered structures of ferrite and high temperature superconductor (HTSC) layers. We solve the propagation problem for the surface magnetostatic waves under a quasistatic approximation, and obtain the dispersion relation. We present an analysis of this dispersion near the phase transition temperature in the HTSC layer. The calculations show that when the HTSC material transforms to the superconducting state the dispersion properties of the magnetostatic waves changes suddenly: the damping decreases by 4–10 dB and the phase velocity increases by a factor of 2–4. These results support experiments which have been performed, in which surface magnetostatic waves have been studied in a YIG film with gallium impurities and a YBaCuO film on a lithium niobate substrate.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 50–55, March, 1995.  相似文献   

15.
A special direction of the wave vector was found for volume magnetostatic waves (MSWs) that coincides with the cutoff angle for surface MSWs; when crossing this direction, the field configuration for MSWs with small wavenumbers changes sharply. It is shown that this direction corresponds to the maximum asymmetry of magnetostatic potential distribution over the film depth and the largest wave penetration depth into the film bulk from the surface. This effect occurs also for volume MSWs propagating in a wave channel.  相似文献   

16.
17.
The spectrum and propagation losses of a surface magnetostatic wave in a 1D ferrite magnon crystal are experimentally studied as a function of angle φ between the wavevectors of the surface magnetostatic wave and periodic crystal lattice. Variation in the positions of Bragg forbidden bands with angle φ is described. A wide transmission band is discovered near long-wave frequency boundary f 0 of the surface magnetostatic wave in a narrow interval of angles around φ ≈ 57°. In the interval 70° < φ < 90° and at frequencies below f 0, there exists a magnetostatic wave with a wavevector that is normal to the bias field.  相似文献   

18.
Magnetostatic surface spin waves (MSSW) excited from a coplanar waveguide antenna travel in different directions with different amplitudes. This effect, called nonreciprocity of MSSW, has been investigated by micromagnetic simulations. The ratio of amplitude of two counter propagating spin waves, the nonreciprocity parameter κ, is obtained for different ferromagnetic materials, such as NiFe (Py), CoFeAl, yttrium iron garnet (YIG), and GaMnAs. A device schematic has been proposed in which κ can be tuned to a large value by varying simple geometrical parameters of the device.  相似文献   

19.
The propagation of surface magnetostatic waves in a ferromagnetic film of variable thickness having a planar periodic structure in the form of a grating of etched parallel strips (one-dimensional magnon crystal) has been investigated. The dispersion characteristics of surface magnetostatic waves have been calculated using the Wentzel-Kramers-Brillouin method. The intrinsic error of the method has been estimated, and the magnon spectrum of the surface magnetostatic wave has been studied. An analysis of the dispersion characteristics and the transmission capacity of these structures has demonstrated that they can be used for designing narrow-band and comb filters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号