首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this paper, we consider the pressure projection stabilized finite element method for the Stokes problem with nonlinear slip boundary conditions whose variational formulation is the variational inequality problem of the second kind with the Stokes operator. The H1 and L2 error estimates for the velocity and the L2 error estimate for the pressure are obtained. Finally, the numerical results are displayed to verify the theoretical analysis.  相似文献   

3.
4.
Summary This paper considers a fully practical piecewise linear finite element approximation of the Dirichlet problem for a second order self-adjoint elliptic equation,Au=f, in a smooth region< n (n=2 or 3) by the boundary penalty method. Using an unfitted mesh; that is h , an approximation of with dist (, h )Ch 2 is not in general a union of elements; and assuminguH 4 () we show that one can recover the total flux across a segment of the boundary of with an error ofO(h 2). We use these results to study a fully practical piecewise linear finite element approximation of an elliptic equation by the boundary penalty method when the prescribed data on part of the boundary is the total flux.Supported by a SERC research studentship  相似文献   

5.
Numerische Mathematik - This paper considers a finite element approximation of the Dirichlet problem for a second order self-adjoint elliptic equation,Au=f, in a region Ω ⊂ ℝn (n=2...  相似文献   

6.
Convergence results are presented for the immersed boundary (IB) method applied to a model Stokes problem. As a discretization method, we use the finite element method. First, the immersed force field is approximated using a regularized delta function. Its error in the W?1, p norm is examined for 1 ≤ p < n/(n ? 1), with n representing the space dimension. Subsequently, we consider IB discretization of the Stokes problem and examine the regularization and discretization errors separately. Consequently, error estimate of order h1 ? α in the W1, 1 × L1 norm for the velocity and pressure is derived, where α is an arbitrary small positive number. The validity of those theoretical results is confirmed from numerical examples.  相似文献   

7.
Composite penalty method of a low order anisotropic nonconforming quadrilateral finite element for the Stokes problem is presented. This method with a large penalty parameter can achieve the same accuracy as the stand method with a small penalty parameter and the convergence rate of this method is two times as that of the standard method under the condition of the same order penalty parameter. The superconvergence for velocity is established as well. The results of this paper are also valid to the most of the known nonconforming finite element methods.  相似文献   

8.
This paper focuses on the numerical analysis of a finite element method with stabilization for the unsteady incompressible Navier–Stokes equations. Incompressibility and convective effects are both stabilized adding an interior penalty term giving L 2-control of the jump of the gradient of the approximate solution over the internal faces. Using continuous equal-order finite elements for both velocities and pressures, in a space semi-discretized formulation, we prove convergence of the approximate solution. The error estimates hold irrespective of the Reynolds number, and hence also for the incompressible Euler equations, provided the exact solution is smooth.  相似文献   

9.
We propose a new mixed formulation of the Stokes problem where the extra stress tensor is considered. Based on such a formulation, a mixed finite element is constructed and analyzed. This new finite element has properties analogous to the finite volume methods, namely, the local conservation of the momentum and the mass. Optimal error estimates are derived. For the numerical implementation of this finite element, a hybrid form is presented. This work is a first step towards the treatment of viscoelastic fluid flows by mixed finite element methods.  相似文献   

10.
Summary We consider a mixed finite element approximation of the stationary, incompressible Navier-Stokes equations with slip boundary condition, which plays an important rôle in the simulation of flows with free surfaces and incompressible viscous flows at high angles of attack and high Reynold's numbers. The central point is a saddle-point formulation of the boundary conditions which avoids the well-known Babuka paradox when approximating smooth domains by polyhedrons. We prove that for the new formulation one can use any stable mixed finite element for the Navier-Stokes equations with no-slip boundary condition provided suitable bubble functions on the boundary are added to the velocity space. We obtain optimal error estimates under minimal regularity assumptions for the solution of the continous problem. The techniques apply as well to the more general Navier boundary condition.  相似文献   

11.
We present a finite element method for the Stokes equations involving two immiscible incompressible fluids with different viscosities and with surface tension. The interface separating the two fluids does not need to align with the mesh. We propose a Nitsche formulation which allows for discontinuities along the interface with optimal a priori error estimates. A stabilization procedure is included which ensures that the method produces a well conditioned stiffness matrix independent of the location of the interface.  相似文献   

12.
We consider the fictitious domain method with L2‐penalty for the Stokes problem with the Dirichlet boundary condition. First, we investigate the error estimates for the penalty method at the continuous level. We obtain the convergence of order in H1‐norm for the velocity and in L2‐norm for the pressure, where is the penalty parameter. The L2‐norm error estimate for the velocity is upgraded to . Moreover, we derive the a priori estimates depending on for the solution of the penalty problem. Next, we apply the finite element approximation to the penalty problem using the P1/P1 element with stabilization. For the discrete penalty problem, we prove the error estimate in H1‐norm for the velocity and in L2‐norm for the pressure, where h denotes the discretization parameter. For the velocity in L2‐norm, the convergence rate is improved to . The theoretical results are verified by the numerical experiments.  相似文献   

13.
Summary We consider mixed finite element approximations of the stationary, incompressible Navier-Stokes equations with slip boundary condition simultaneously approximating the velocity, pressure, and normal stress component. The stability of the schemes is achieved by adding suitable, consistent penalty terms corresponding to the normal stress component and to the pressure. A new method of proving the stability of the discretizations allows, us to obtain optimal error estimates for the velocity, pressure, and normal stress component in natural norms without using duality arguments and without imposing uniformity conditions on the finite element partition. The schemes can easily be implemented into existing finite element codes for the Navier-Stokes equations with standard Dirichlet boundary conditions.  相似文献   

14.
By applying the Landau-type transformation, we transform a Stefan problem with nonlinear free boundary condition into a system consisting of a parabolic equation and the ordinary differential equations. Fully discrete finite element method is developed to approximate the solution of a system of a parabolic equation and the ordinary differential equations. We derive optimal orders of convergence of fully discrete approximations inL2, H1 and H2 normed spaces.  相似文献   

15.
In this paper, we examine the method of characteristic-mixed finite element for the approximation of convex optimal control problem governed by time-dependent convection-diffusion equations with control constraints. For the discretization of the state equation, the characteristic finite element is used for the approximation of the material derivative term (i.e., the time derivative term plus the convection term), and the lowest-order Raviart-Thomas mixed element is applied for the approximation of the diffusion term. We derive some a priori error estimates for both the state and control approximations.  相似文献   

16.
A fully discrete penalty finite element method is presented for the two-dimensional time-dependent Navier-Stokes equations. The time discretization of the penalty Navier-Stokes equations is based on the backward Euler scheme; the spatial discretization of the time discretized penalty Navier-Stokes equations is based on a finite element space pair which satisfies some approximate assumption. An optimal error estimate of the numerical velocity and pressure is provided for the fully discrete penalty finite element method when the parameters and are sufficiently small.

  相似文献   


17.
We consider a symmetric Galerkin boundary element method for the Stokes problem with general boundary conditions including slip conditions. The boundary value problem is reformulated as Steklov–Poincaré boundary integral equation which is then solved by a standard approximation scheme. An essential tool in our approach is the invertibility of the single layer potential which requires the definition of appropriate factor spaces due to the topology of the domain. Here we describe a modified boundary element approach to solve Dirichlet boundary value problems in multiple connected domains. A suitable extension of the standard single layer potential leads to an operator which is elliptic on the original function space. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
In this work we present an adaptive strategy (based on an a posteriori error estimator) for a stabilized finite element method for the Stokes problem, with and without a reaction term. The hierarchical type estimator is based on the solution of local problems posed on appropriate finite dimensional spaces of bubble-like functions. An equivalence result between the norm of the finite element error and the estimator is given, where the dependence of the constants on the physics of the problem is explicited. Several numerical results confirming both the theoretical results and the good performance of the estimator are given.  相似文献   

19.
In this paper we propose a stabilized conforming finite volume element method for the Stokes equations. On stating the convergence of the method, optimal a priori error estimates in different norms are obtained by establishing the adequate connection between the finite volume and stabilized finite element formulations. A superconvergence result is also derived by using a postprocessing projection method. In particular, the stabilization of the continuous lowest equal order pair finite volume element discretization is achieved by enriching the velocity space with local functions that do not necessarily vanish on the element boundaries. Finally, some numerical experiments that confirm the predicted behavior of the method are provided.  相似文献   

20.
The steady solution and the asymptotic behavior of the corresponding nonsteady solution are studied for Navier–Stokes equations under the general Navier slip boundary condition. The existence of a unique stationary solution is established. It is also proved that this solution is asymptotically stable under some restrictions on the data. Bibliography: 16 titles. Dedicated to Vsevolod Alekseevich Solonnikov on the occasion of his jubilee Published in Zapiski Nauchnykh Seminarov POMI, Vol. 362, 2008, pp. 153–175.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号