首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For a graph G, p(G) and c(G) denote the order of a longest path and a longest cycle of G, respectively. Bondy and Locke [J.A. Bondy, S.C. Locke, Relative length of paths and cycles in 3-connected graphs, Discrete Math. 33 (1981) 111-122] consider the gap between p(G) and c(G) in 3-connected graphs G. Starting with this result, there are many results appeared in this context, see [H. Enomoto, J. van den Heuvel, A. Kaneko, A. Saito, Relative length of long paths and cycles in graphs with large degree sums, J. Graph Theory 20 (1995) 213-225; M. Lu, H. Liu, F. Tian, Relative length of longest paths and cycles in graphs, Graphs Combin. 23 (2007) 433-443; K. Ozeki, M. Tsugaki, T. Yamashita, On relative length of longest paths and cycles, preprint; I. Schiermeyer, M. Tewes, Longest paths and longest cycles in graphs with large degree sums, Graphs Combin. 18 (2002) 633-643]. In this paper, we investigate graphs G with p(G)−c(G) at most 1 or at most 2, but with no hamiltonian paths. Let G be a 2-connected graph of order n, which has no hamiltonian paths. We show two results as follows: (i) if , then p(G)−c(G)≤1, and (ii) if σ4(G)≥n+3, then p(G)−c(G)≤2.  相似文献   

2.
图G为边染色图,对G中的任一顶点v,定义v的色度dc(v):G中与顶点v相关联的边中不同染色的数目.用δc(G)表示图G的最小色度,即δc(G)=min{dc(v):v∈G}.若图G为不含三角形的边染色图,且δc(G)≥2,则G含长为4d-2的正常染色路或长至少为2d-2的正常染色圈.  相似文献   

3.
In an edge-colored graph, let dc(v) be the number of colors on the edges incident to v and let δc(G) be the minimum dc(v) over all vertices vG. In this work, we consider sharp conditions on δc(G) which imply the existence of properly edge-colored paths and cycles, meaning no two consecutive edges have the same color.  相似文献   

4.
A proper edge coloring of a graph G is said to be acyclic if there is no bicolored cycle in G.The acyclic edge chromatic number of G,denoted byχ′a(G),is the smallest number of colors in an acyclic edge coloring of G.Let G be a planar graph with maximum degree.In this paper,we show thatχ′a(G)+2,if G has no adjacent i-and j-cycles for any i,j∈{3,4,5},which implies a result of Hou,Liu and Wu(2012);andχ′a(G)+3,if G has no adjacent i-and j-cycles for any i,j∈{3,4,6}.  相似文献   

5.
Acyclic edge colouring of planar graphs without short cycles   总被引:1,自引:0,他引:1  
Let G=(V,E) be any finite graph. A mapping C:E→[k] is called an acyclic edgek-colouring of G, if any two adjacent edges have different colours and there are no bichromatic cycles in G. In other words, for every pair of distinct colours i and j, the subgraph induced in G by all the edges which have colour i or j, is acyclic. The smallest number k of colours, such that G has an acyclic edge k-colouring is called the acyclic chromatic index of G, denoted by .In 2001, Alon et al. conjectured that for any graph G it holds that ; here Δ(G) stands for the maximum degree of G.In this paper we prove this conjecture for planar graphs with girth at least 5 and for planar graphs not containing cycles of length 4,6,8 and 9. We also show that if G is planar with girth at least 6. Moreover, we find an upper bound for the acyclic chromatic index of planar graphs without cycles of length 4. Namely, we prove that if G is such a graph, then .  相似文献   

6.
We obtain several sufficient conditions on the degrees of an oriented graph for the existence of long paths and cycles. As corollaries of our results we deduce that a regular tournament contains an edge-disjoint Hamilton cycle and path, and that a regular bipartite tournament is hamiltonian.  相似文献   

7.
For a graphG, letp(G) andc(G) denote the length of a longest path and cycle, respectively. Let (t,n) be the minimum ofp(G), whereG ranges over allt-tough connected graphs onn vertices. Similarly, let (t,n) be the minimum ofc(G), whereG ranges over allt-tough 2-connected graphs onn vertices. It is shown that for fixedt>0 there exist constantsA, B such that (t,n)A·log(n) and (t,n)·log((t,n))B·log(n). Examples are presented showing that fort1 there exist constantsA, B such that (t,n)A·log(n) and (t,n)B· log(n). It is conjectured that (t,n) B·log(n) for some constantB. This conjecture is shown to be valid within the class of 3-connected graphs and, as conjectured in Bondy [1] forl=3, within the class of 2-connectedK 1.l-free graphs, wherel is fixed.  相似文献   

8.
We consider finite undirected loopless graphs G in which multiple edges are possible. For integers k,l ≥ 0 let g(k, l) be the minimal n ≥ 0 with the following property: If G is an n-edge-connected graph, s1, ?,sk, t1, ?,tk are vertices of G, and f1, ?,fl, g1, ?,gl, are pairwise distinct edges of G, then for each i = 1, ?, k there exists a path Pi in G, connecting si and ti and for each i = 1, ?,l there exists a cycle Ci in G containing fi and gi such that P1, ?,Pk, C1, ?, Cl are pairwise edge-disjoint. We give upper and lower bounds for g(k, l).  相似文献   

9.
10.
In this paper,we prove that 2-degenerate graphs and some planar graphs without adjacent short cycles are group(Δ(G)+1)-edge-choosable,and some planar graphs with large girth and maximum degree are groupΔ(G)-edge-choosable.  相似文献   

11.
For every integerd>2 we give an explicit construction of infinitely many Cayley graphsX of degreed withn(X) vertices and girth >0.4801...(logn(X))/log (d−1)−2. This improves a result of Margulis. Dedicated to Paul Erdős on his seventieth birthday  相似文献   

12.
For nN and DN, the distance graph has vertex set {0,1,…,n−1} and edge set {ij∣0≤i,jn−1,|ji|∈D}. Note that the important and very well-studied circulant graphs coincide with the regular distance graphs.A fundamental result concerning circulant graphs is that for these graphs, a simple greatest common divisor condition, their connectivity, and the existence of a Hamiltonian cycle are all equivalent. Our main result suitably extends this equivalence to distance graphs. We prove that for a finite set D of order at least 2, there is a constant cD such that the greatest common divisor of the integers in D is 1 if and only if for every n, has a component of order at least ncD if and only if for every ncD+3, has a cycle of order at least ncD. Furthermore, we discuss some consequences and variants of this result.  相似文献   

13.
Let G be a graph with n vertices and μ(G) be the largest eigenvalue of the adjacency matrix of G. We study how large μ(G) can be when G does not contain cycles and paths of specified order. In particular, we determine the maximum spectral radius of graphs without paths of given length, and give tight bounds on the spectral radius of graphs without given even cycles. We also raise a number of open problems.  相似文献   

14.
Ore-type sufficient conditions ensuring the existence of a large cycle passing through any given path of length s for (s + 2)-connected graphs are given, and the extremal cases are characterized.  相似文献   

15.
We present some lower and upper bounds on the length of the maximum induced paths and cycles in Kneser graphs.  相似文献   

16.
17.
We extend an elegant proof technique of A. G. Thomason, and deduce several parity theorems for paths and cycles in graphs. For example, a graph in which each vertex is of even degree has an even number of paths if and only if it is of even order, and a graph in which each vertex is of odd degree has an even number of paths if and only if its order is a multiple of four. Our results have implications for generalized friendship graphs and their conjectured nonexistence.  相似文献   

18.
In this paper we obtain two sufficient conditions, Ore type (Theorem 1) and Dirac type (Theorem 2), on the degrees of a bipartite oriented graph for ensuring the existence of long paths and cycles. These conditions are shown to be the best possible in a sense.  相似文献   

19.
It is shown that, for ϵ>0 and n>n0(ϵ), any complete graph K on n vertices whose edges are colored so that no vertex is incident with more than (1-1/\sqrt2-\epsilon)n edges of the same color contains a Hamilton cycle in which adjacent edges have distinct colors. Moreover, for every k between 3 and n any such K contains a cycle of length k in which adjacent edges have distinct colors. © 1997 John Wiley & Sons, Inc. Random Struct. Alg., 11 , 179–186 (1997)  相似文献   

20.
Assume % MathType!End!2!1! and let Ω⊂R N(N≥4) be a smooth bounded domain, 0∈Ω. We study the semilinear elliptic problem: % MathType!End!2!1!. By investigating the effect of the coefficientQ, we establish the existence of nontrivial solutions for any λ>0 and multiple positive solutions with λ,μ>0 small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号