首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the formation of a Keggin-type [PMo12O40]3- complex, a sensitive capillary electrophoresis (CE) method was developed for the determination of P(V) with direct UV detection at 220 nm. A mixture of alpha- and beta-Keggin-type [PMo12O40]3- complexes was readily formed in a sample solution consisting of a trace amount of P(V), 2.5 mM Mo(VI), 0.050 M p-C6H3(CH3)-2-SO3H (XSA), and 60% v/v CH3CN. When a 0.05 M HCl and 60% v/v CH3CN solution was used as a migration electrolyte, the Keggin complexes exhibited a sharp and well-defined peak in the electropherogram. The peak area was linearly dependent on the P(V) concentration in the range of 5 x 10(-7)-5 x 10(-5) M; a detection limit of 1 x 10(-7) M was achieved. In comparison with indirect UV detection, the direct UV detection is about ten times more sensitive, because the Keggin complexes possess high molar absorptivities. The developed CE method was applied to the determination of P(V) in river water, and the results were in good agreement with those obtained by ion chromatography (IC) and colorimetry (COL) based on the formation of mixed-valence heteropoly blue species.  相似文献   

2.
A spectrophotometric method for the determination of total carbonate in water samples was developed. The method is based on the color change of an acid-base indicator in relation to the concentration of permeable gas substances through a membrane. By using a new portable FIA system equipped with a gas-diffusion unit, a highly sensitive and on-site determination of total carbonate in aqueous solutions was investigated. A new color-change system with 4-(2',4'-dinitrophenylazo)-1-naphthol-5-sulfonic acid (DNN5S) was developed. Absorbance changes of the reagent solution were measured at 450 nm with a light-emitting diode (LED) as a light source. A new type of gas-diffusion unit was used, and was constructed with double tubing: the inner tubing was a micro porous PTFE (polytetrafluoroethylene) tubing (1.0 mm inner diameter and 1.8 mm outer diameter, pore size 2 microns, porosity 50%); the outer tubing was made of glass with 2.0 mm inner diameter. The optimized system conditions were as follows: the sample size was 200 microliters, the temperature of the air bath for the gas-diffusion unit was 25 degrees C, and the length of the gas-diffusion unit was 15 cm; each flow rate was 0.3 ml min-1. For measuring carbonate at low concentrations, a method for preparing water with less carbonate was proposed: the carbonate content of the water was decreased down to 5 x 10(-7) M. The calibration graph was rectilinear from 1 x 10(-6) M to 10(-3) M, and the detection limit (corresponding to a signal-to-noise ratio of 3) was 1 x 10(-6) M of carbonate. The relative standard deviation (RSD) of ten measurements of 2.3 x 10(-5) M Na2CO3 solution was 1.9%. The total carbonate in various kinds of water (such as river, sea, rain, distilled and ultra purified) was determined.  相似文献   

3.
An indirect colorimetric method is presented for detection of trace amounts of hydroquinone (1), catechol (2) and pyrogallol (3). The reduction of AuCl4(-) to Gold nanoparticles (Au-NPs) by these phenolic compounds in the presence of cetyltrimethylammonium chloride (CTAC) produced very intense surface plasmon resonance peak of Au-NPs. The plasmon absorbance of Au-NPs allows the quantitative colorimetric detection of the phenolic compounds. The calibration curves derived from the changes in absorbance at lambda = 568 nm were linear with concentration of hydroquinone, catechol and pyrogallol in the range of 7.0 x 10(-7) to 1.0 x 10(-4)M, 6.0 x 10(-6) to 2.0 x 10(-4)M and 6.0 x 10(-7) to 1.0 x 10(-4)M, respectively. The detection limits were 5.3 x 10(-7), 2.5 x 10(-6) and 3.2 x 10(-7)M for the hydroquinone, catechol and pyrogallol, respectively. The method was applied satisfactorily to the determination of phenolic compounds in water samples and pharmaceutical formulations.  相似文献   

4.
A novel absolute determination method using chirality without any calibration curves or comparison standards has been proposed for phosphorus-containing amino acid-type herbicides, glufosinate (D,L-GLUF) and bialaphos (BIAL). This method is based on a change in the enantiomeric ratio after the spiking of a known amount of the enantiomers with different enantiomeric ratios to a sample. D,L-GLUF was determined by adding a known amount of L-GLUF to the sample, derivatizing them with dansyl chloride, and measuring the ratio of the peak area of the D-isomer to that of the L-isomer by means of gamma-cyclodextrin modified capillary zone electrophoresis. The accuracy and precision of the method were evaluated using a synthetic sample. The mean values obtained for D- and L-GLUF agreed with the values taken within 1.6%; also the reproducibility was as good as less than 2.8%. The determination of BIAL was achieved by determining GLUF quantitatively produced by the acid hydrolysis of BIAL. The proposed methods were applied to the analysis of commercial herbicides and the validity and usefulness were evaluated.  相似文献   

5.
Zhang J  Wu X  Zhang W  Xu L  Chen G 《Electrophoresis》2008,29(4):796-802
A simple and rapid sweeping method for the online improvement of detection limit of some aromatic amines has been developed in this work. The optimum sweeping and separation conditions for 4-methylaniline, 3,4-dichloroaniline, 4-chloroaniline, and 4-aminophenyl were investigated in detail. Under the optimum conditions, the detection limits of these four aromatic amines ranged from 5.4 x 10(-10) to 4.6 x 10(-8)mol/L (S/N = 3), which was about 80-1090-folds lower than those of conventional sample injections. Linear response range were in the range of 2.5 x 10(-8)-2.0 x 10(-6)mol/L with the correlation coefficient between 0.9965 and 0.9994. Baseline separation was achieved within 10 min. After validation, the developed method was applied to determine 4-methylaniline, 3,4-dichloroaniline, 4-chloroaniline, and 4-aminophenyl in river water sample with average recoveries of 79.6-88.7%.  相似文献   

6.
A new design of a continuous flow system applied to the simultaneous determination of the concentration of zinc(II), cadmium(II), lead(II), copper(II), nickel(II), cobalt(II) and chromium(VI) in river water is described. A flow cell made in the laboratory, which has been patented, based on a 'wall-jet' configuration with a three-electrode system is described. Optimum conditions for the determination of the metal ions are reported. The detection limits and relative standard deviation values were 4.01x10(-9) M and 0.078 for Zn(II), 1.76x10(-10) M and 0.056 for Cd(II), 4.69x10(-10) M and 0.134 for Pb(II), 2.29x10(-10) M and 0.138 for Cu(II), 1.61x10(-9) M and 0.093 for Ni(II), 1.91x10(-9) M and 0.113 for Co(II), and 1.35x10(-9) M and 0.081 for Cr(VI). The procedure was applied to a sample of water from the Arlanzón river and the results were compared with inductively coupled mass plasma spectrometry (ICP-MS) as reference method. The final aim of this work is to design a flow system, which can be automated.  相似文献   

7.
A method for the trace analysis of methylmercury (MeHg) and Hg(II) in water sample was developed, which involved stir bar sorptive extraction (SBSE) with in situ alkylation with sodium tetraethylborate and thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS). The limits of quantification of MeHg and Hg(II) are 20 and 10 ng L−1 (Hg), respectively. The method shows good linearity and the correlation coefficients are higher than 0.999. The average recoveries of MeHg and Hg(II) in tap or river water sample are 102.1-104.3% (R.S.D.: 7.0-8.9%) and 105.3-106.2% (R.S.D.: 7.4-8.5%), respectively. This simple, accurate, sensitive, and selective analytical method may be used in the determination of trace amounts of MeHg and Hg(II) in tap and river water samples.  相似文献   

8.
A novel method called thermal desorption (TD) with in tube silylation followed by gas chromatography-mass spectrometry (GC-MS), which is used for the determination of trace amounts of alkylphenols (APs) in river water samples, is described. APs are extracted from river water samples and concentrated by the stir bar sorptive extraction (SBSE) technique. The stir bar coated with polydimethylsiloxane (PDMS) is added to 2.0 ml water sample and stirring is carried out for 60 min at room temperature (25 degrees C) in the vial. Then, the PDMS stir bar is subjected to TD with in tube silylation followed by GC-MS. The detection limit is of the sub pg ml(-1) (ppt) level. The method shows good linearity and the correlation coefficients are higher than 0.99 for all analytes. The average recoveries of APs are higher than 90% (R.S.D.: 3.6-14.8%, n=6). This simple and sensitive analytical method may be used in the determination of trace amounts of APs in river water samples.  相似文献   

9.
Bromate ion in drinking water was determined by capillary zone electrophoresis (CZE) with direct photometric detection. Bromate ion in the sample solution was introduced and concentrated into the capillary by electrokinetic injection for 50s at -10 kV. Electrophoretic separation was made at an applied voltage of -25 kV and bromate ion was detected at wavelength 193 nm, at which the baseline was stabilized with less UV-absorbing acidic phosphate buffer. Bromate ion was detected within 5 min in the electropherogram. By increasing the electric conductivity in the migrating solution with 10 mM Na2SO4, a limit of detection (LOD) of 9 x 10(-10)M (0.1 microg/L BrO3-) was achieved. The proposed method was applied to the analysis of tap water and river water samples, but bromate ion was not detected. Because the practical samples contain relatively large amount of foreign ionic substances, the tap water sample was diluted to avoid the matrix ions. Bromate ion added in a tap water at the concentration of 8 x 10(-8)M was quantitatively recovered by diluting it 1/10.  相似文献   

10.
This paper describes a simple and highly selective method for separation, preconcentration and spectrophotometric determination of trace amounts of mercury. The method is based on the flotation of an ion-associate of HgI4(2-) and ferroin between aqueous and n-heptane interface at pH 5. The ion-associate was then separated and dissolved in acetonitrile to measure its absorbance. Quantitative flotation of the ion-associate was achieved when the volume of the water sample containing Hg(II) was varied over 50 - 800 ml. Beer's law was obeyed over the concentration range of 3.2 x 10(-8) - 9.5 x 10(-7) mol l(-1) with an apparent molar absorptivity of 1 x 10(6) l mol(-1) cm(-1) for a 500 ml aliquot of the water sample. The detection limit (n = 25) was 6.2 x 10(-9) mol l(-1), and the RSD (n = 5) for 3.19 x 10(-7) mol l(-1) of Hg(II) was 1.9%. A notable advantage of the method is that the determination of Hg(II) is free from the interference of the almost all cations and anions found in the environmental and waste water samples. The determination of Hg(II) in tap, synthetic waste, and seawater samples was carried out by the present method and a well-established method of extraction with dithizone. The results were satisfactorily comparable so that the applicability of the proposed method was confirmed in encountering with real samples.  相似文献   

11.
An on-line solid-phase extraction (SPE) protocol using the cigarette filter as sorbent coupled with high-performance liquid chromatography (HPLC) was developed for simultaneous determination of trace naphthalene (NAPH), phenanthrene (PHEN), anthracene (ANT), fluoranthene (FLU), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), and benzo(ghi)perylene (BghiP) in water samples. To on-line interface solid-phase extraction to HPLC, a preconcentration column packed with the cigarette filter was used to replace a conventional sample loop on the injector valve of the HPLC for on-line solid-phase extraction. The sample solution was loaded and the analytes were then preconcentrated onto the preconcentration column. The collected analytes were subsequently eluted with a mobile phase of methanol-water (95:5). HPLC with a photodiode array detector was used for their separation and detection. The detection limits (S/N = 3) for preconcentrating 42 mL of sample solution ranged from 0.9 to 58.6 ng L(-1) at a sample throughput of 2 samples h(-1). The enhancement factors were in the range of 409-1710. The developed method was applied to the determination of trace NAPH, PHEN, ANT, FLU, BbF, BkF, BaP and BghiP in local river water samples. The recoveries of PAHs spiked in real water samples ranged from 87 to 115%. The precisions for nine replicate measurements of a standard mixture (NAPH: 4.0 microg L(-1), PHEN: 0.40 microg L(-1), ANT: 0.40 microg L(-1), FLU: 2.0 microg L(-1), BbF: 1.6 microg L(-1), BkF: 2.0 microg L(-1), BaP: 2.0 microg L(-1), BghiP: 1.7 microg L(-1)) were in the range of 1.2-5.1%.  相似文献   

12.
A simple and selective spectrophotometric method is proposed for the determination of ultra trace amounts of Tl(III). The reported method is based on the oxidation of 4-(4'-N,N-dimethylaminophenyl)urazole (DAPU) to the corresponding triazolinedione (TAD) by Tl(III) at pH 4.0. The reaction was monitored spectrophotometrically by measuring the increasing color of TAD compound at 514 nm by the fixed-time method. At a given time of 2.0 min at 30 degrees C, the working range of calibration was 5.0 x 10(-8) - 2.0 x 10(-5) M Tl(III) and detection limit of 5.0 x 10(-8) M was obtained. The influences of pH, reagent concentration, ionic strength and temperature were studied. The effect of diverse ions on the determination of Tl(III) by the proposed method was also investigated. Thallium in real samples was determined by this method, with satisfactory results.  相似文献   

13.
An automated method based on the on-line coupling of anion-exchange solid-phase extraction (SPE) and cation-exchange liquid chromatography followed by post-column derivatization and fluorescence detection has been developed for the trace level determination of glyphosate and its primary conversion product aminomethyl phosphonic acid (AMPA) in water. PRP-X100 poly(styrene-divinylbenzene)-trimethylammonium anion-exchange cartridges (20 x 2 mm, 10 microm) were selected for the SPE of glyphosate and AMPA. The ionic compounds present in the samples strongly influenced the extraction of both analytes; however, when an on-line ion-exchange clean-up step was introduced before sample SPE, the problem was largely solved. By processing 100-ml samples detection limits better than 0.02 microg/l for glyphosate and 0.1 microg/l for AMPA were achieved in river water. Both analytes were unstable in solution and the approach of storing samples on the PRP-X100 SPE cartridges was evaluated for a period of 1 month under three different storage conditions (deep freeze, refrigeration and 20 degrees C).  相似文献   

14.
A very sensitive electrochemical method for trace measurement of fluoride in water is discussed. The complex of cerium(III) with alizarin complexone (ALC) and fluoride ion is adsorbed at the dropping mercury electrode. In cathodic sweeps, the peak height is directly proportional to the concentration of fluoride over the range 8 x 10(-8)-5 x 10(-6)M (1.5 x 10(-9)-9.5 x 10(-8) g/ml), and the detection limit is 5 x 10(-8)M (9.5 x 10(-10) g/ml). The proposed method was applied to the determination of fluoride in water.  相似文献   

15.
A simple, rapid, sensitive and reproducible spectrophotometry for determination of ultra trace organophosphorus pesticides (OPs) with liquid core waveguide light intensity technique is presented. OPs were degraded into phosphate with UV light, potassium peroxydisulphate as oxidant and nanosized titanium dioxide as catalyst. Under the optimum selected conditions, linear light intensity response was obtained in the range of 2.0 x 10(-11) to 8.0 x 10(-10)g mL(-1) phosphate, and the limit of detection (LOD) 6.7 x 10(-12)g mL(-1) was achieved. Both the low limit of linear range and the LOD of the proposed method were lower over 1000-fold than that of classical spectrophotometry. The proposed method was applied to the determination of ultra trace OPs in vegetables and fruits samples.  相似文献   

16.
He Z  Luo Q  Ma H  Yu X  Zeng Y 《Talanta》1994,41(5):707-710
A new reagent proflavine-N, N, N', N'-tetraacetic acid (PTA) synthesized in our laboratory has been found useful as a chemiluminescence reagent for the determination of ruthenium (Ru) in pH 2.5 sulfuric acid solution containing acetone, it can be oxidized catalytically by hydrogen peroxide. With Ru(III) as catalyst, it emits light selectively. The linear range is between 2.0 x 10(-8) and 2.0 x 10(-5) g/ml. The detection limit and the recovery rate of the method are 1.0 x 10(-9)g/ml and 96.0-102%, respectively. The method has been satisfactorily applied to determine trace Ru(III) in synthesized sample.  相似文献   

17.
Zhao Z  Pei J  Zhang X  Zhou X 《Talanta》1990,37(10):1007-1010
A differential pulse stripping voltammetry method for the trace determination of molybdenum(VI) in water and soil has been developed. In 0.048M oxalic acid and 6 x 10(-5)M Toluidine Blue (pH 1.8) solution, Mo(V), the reduction product of Mo(VI) in the sample solution, can form a ternary complex, which can be concentrated by adsorption on a static mercury drop electrode at -0.1 V (vs. Ag/AgCl). The adsorbed complex gives a well-defined cathodic stripping current peak at -0.30 V, which can be used for determining Mo(VI) in the range 5 x 10(-10)-7 x 10(-9)M, with a detection limit of 1 x 10(-10)M (4 min accumulation). The method is also selective. Most of the common ions do not interfere but Sn(IV) and large amounts of Cu(2+), Ag(+) and Au(3+) affect the determination.  相似文献   

18.
An on-line system that consists of continuous-flow liquid membrane extraction (CFLME), C18 precolumn, and liquid chromatography with UV detection was applied to trace analysis of sulfonylurea herbicides in water. During preconcentration by CFLME, five target compounds, including metsulfuron methyl, bensulfuron methyl, tribenuron methyl, sulfometuron methyl, and ethametsulfuron, were enriched in 960 microl of 0.5 mol l(-1) Na2CO3-NaHCO3 (pH 10.8) buffer used as acceptor. This acceptor was on-line neutralized and transported to the C18 precolumn where the analytes were absorbed and focused. Then the focused analytes were injected onto a C18 analytical column for separation and detection at 240 nm. The proposed method was applied to determine sulfonylurea herbicides in water, river, and reservoir water with detection limits of 10-50 ng l(-1) when enriching a 120-ml sample. Throughput is typically one sample per hour.  相似文献   

19.
A simple, sensitive and selective chemiluminescence (CL) method was developed for the direct determination of aluminum (Al). This method is based on that the weak CL of cerium (IV)-calcein can be greatly enhanced by Al(III). The calibration curve was linear over the range 2.0 x 10(-10) to 4.0 x 10(-8)g mL(-1) with a detection limit of 8 x 10(-11)g mL(-1) (3sigma). The R.S.D. was 2.5% by 11 replicated determinations of 1.0 x 10(-9)g mL(-1) Al(III). The proposed method has been used to determine the concentration of Al(III) in real water samples with satisfactory results. The mechanism of the CL reaction was also discussed.  相似文献   

20.
Tuzhi P  Zhongping Y  Rongshan L 《Talanta》1991,38(7):741-745
A sensitive stripping voltammetric method is reported for trace measurement of the psychotherapeutic drug haloperidol. The method is based on adsorptive preconcentration of haloperidol on the glassy-carbon electrode in an open circuit, followed by medium exchange and voltammetric determination of surface species. Cyclic voltammetry was used to explore the adsorptive behaviour and the results obtained suggest that the adsorption of haloperidol corresponds to the Frumkin-type isotherm. The adsorptive stripping response was evaluated with respect to stripping mode, electrolyte. pH, preconcentration time, concentration dependence, possible interference and other variables. The detection limit was 1.3 x 10(-9)M (10 min preconcentration) and the response was linear. The relative standard deviation (at the 1.3 x 10(-6)M level) was 2.3%. Applicability to a patient's urine sample is illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号