首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physics letters. A》2005,335(4):310-315
In this Letter we study the superfluid–Mott-insulator (SMI) phase transition of two-component Bose–Einstein condensates (BECs) in an optical lattice. The analytic exciation energy spectrum is obtained by means of Bogoliubov transformation and hence the SMI phase transition condition is determined explicitly. Moreover, the characteristics of superfluid phase are explained from the energy spectrum.  相似文献   

2.
ZHU Rui 《理论物理通讯》2007,47(5):897-900
The Bose-Hubbard model describing interacting bosons in an optical lattice is reduced to a simple spin-1 XY model with single-ion anisotropy in the vicinity of the Mort phase. We propose a mean-field theory based on a constraint SU(3) pseudo-boson representation on the effective model to study the properties of the superfluid-Mott-insulator phase transition. By calculating the elementary excitation spectra and the average particle number tluctuation in the Brillouin zone center, we lind that the energy gaps vanish continuously around (JXY/Jz)c≈ 0.175 and (JxY/Jz)c ≈ 0.094 for 2D and 3D cubic lattices respectively, where the superfluid order parameters come up from zero and the Mort insulator state changes into a superfluid state.  相似文献   

3.
We investigate the effects of a movable mirror (cantilever) of an optical cavity on the superradiant light scattering from a Bose-Einstein condensate (BEC) in an optical lattice. We show that the mirror motion has a dynamic dispersive effect on the cavity-pump detuning. Varying the intensity of the pump beam, one can switch between the pure superradiant regime and the Bragg scattering regime. The mechanical frequency of the mirror strongly influences the time interval between two Bragg peaks. We find that when the system is in the resolved side band regime for mirror cooling, the superradiant scattering is enhanced due to coherent energy transfer from the mechanical mirror mode to the cavity field mode.  相似文献   

4.
We investigate the effects of a movable mirror (cantilever) of an optical cavity on the superradiant light scattering from a Bose-Einstein condensate (BEC) in an optical lattice. We show that the mirror motion has a dynamic dispersive effect on the cavity-pump detuning. Varying the intensity of the pump beam, one can switch between the pure superradiant regime and the Bragg scattering regime. The mechanical frequency of the mirror strongly influences the time interval between two Bragg peaks. We find that when the system is in the resolved side band regime for mirror cooling, the superradiant scattering is enhanced due to coherent energy transfer from the mechanical mirror mode to the cavity field mode.  相似文献   

5.
We investigate the ground-state properties of an attractively interacting degenerate Fermi gas coupling with a high-finesse optical cavity. We predict a new mixed phase with both the superfluid and superradiant properties for the intermediate fermion-fermion interaction and fermion-photon coupling strengths. Moreover, in this mixed phase a relatively large ratio of the scaled polarization to the dimensionless mean-field gap, which is in contrast to that in the conventional superfluid regime can be obtained. We also figure out rich phase diagrams depending crucially on the atomic resonant frequency (effective Zeeman field) and address briefly the experimental detection of our predicted quantum phases.  相似文献   

6.
The anisotropic superfluidity in a weakly interacting two‐dimensional Bose gas of photons in a dye‐filled optical microcavity is investigated, taking into account the dependence of the photon effective mass on the in‐plane coordinate. With the use of the generalized Gross–Pitaevskii equation and the Bogoliubov approach, it is shown that the modulation of the microcavity width leads to an effective periodic potential and the periodicity of the condensate wave function, and both the condensate energy and the spectrum of elementary excitations depend on the direction of motion. The anisotropic character of the dynamical and superfluid properties, such as helicity modulus, superfluid density, and sound velocity, as well as experimentally observable manifestations of their anisotropy are described.  相似文献   

7.
We report several exact solutions of a two-dimensional (2D) Gross-Pitaevskii equation with an optical lattice potential, which describe the motion of an array of ultracold atomic quasi-clusters in a Bose-Einstein condensate. The velocity of the atomic quasi-clusters can be controlled by adjusting the optical potential strength so that one can stop or drive them by the optical brake. The atomic quasi-clusters form a superfluid for the propagation state or a critical insulator for the non-propagation one, and the brake and drive are associated with the quantum phase transitions between the insulator and superfluid.Received: 3 February 2003PACS: 03.75.-b Matter waves - 05.70.Jk Critical point phenomena - 05.30.Jp Boson systems - 67.90. + z Other topics in quantum fluids and solids; liquid and solid helium  相似文献   

8.
拓扑超流态是一种奇异物质态,它的内部受能隙保护,而在其系统边缘却可以容纳无能隙的Majorana 费米子。由于该粒子满足非阿贝尔统计,并且受拓扑保护具有良好的稳定性,用它 们携带量子化的信息,可以用于拓扑量子计算的研究。近年来,理论工作预测了各类系统中可能 存在的拓扑超流态。我们首先介绍了在各类光晶格模型中的拓扑超流, 光晶格的超冷原子具有良 好的可控性与普适性,是实现拓扑超流的理想模型系统。接下来我们介绍了自旋轨道耦合调控下 的拓扑超流,自旋轨道耦合效应是诱导拓扑相的重要条件,并且人们已经在实验上合成了人工自 旋轨道耦合,这为实验上观测拓扑超流取得了突破性的进展。随着近年来实验技术的提高,曾经 难以在实验中观测的,被人们所忽略的拓扑Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) 超流相也 成为了人们研究的热点,因此我们接下来介绍了拓扑的FFLO 超流。此外,我们还介绍了拓扑超 流其他方面的进展,包括孤子引诱的拓扑超流、三组分的拓扑超流、大陈数的拓扑超流以及拓扑 超流临界温度的提高。在实验中,如何检测与实现拓扑超流,是其研究的目的及意义所在,因 此我们在文章的最后介绍了拓扑超流的识别与实现。  相似文献   

9.
The spectroscopic study ions and atoms immersed into liquid helium can contribute to the understanding of the structure of pointlike defects in helium and their interaction with the superfluid phase as well. Ions and atoms serve as microprobes in the form of so calledbubble orsnowball type defects in the quantum fluid. The optical emission of these structures is recorded. From the optical spectra of previous experiments the influence of the surrounding helium on the electronic configuration of the impurity atoms or ions was examined. In this experiment the light emitted from the defect atoms is observed by a camera. The pictures obtained yield information about the distribution and the motion of the defect particles in the superfluid. As an example the fluorescence light resulting from the recombination of magnesium, barium and thallium ions with excess electrons in superfluid helium was recorded.  相似文献   

10.
The effect of a random field caused by impurities, interface roughness and so on, on the optical properties and superfluidity of a quasi-two-dimensional system of excitons is studied. The influence of a random field on the density of the superfluid component of excitonic systems at low temperatures is investigated. For quasi-two-dimensional excitonic systems in a random field the Kosterlitz–Thouless temperature in the superfluid state is calculated. The superfluidity and Bose–Einstein condensation of indirect excitons in coupled quantum dots are studied. Magnetoexciton light absorption in the disordered quantum wells is considered. The two-particle problem of the magnetoexciton motion in the external field depending on the external magnetic field is reduced to the one-particle motion with effective magnetic mass in some effective field. The energy and optical absorption of the magnetoexciton in a single and coupled quantum dots are studied using the effective-magnetic-mass Hamiltonian. In the coherent potential approximation the coefficient of magnetoexciton optical absorption in single and coupled quantum wells is calculated. In the strong magnetic fields the exciton peak decreases with magnetic field increasing in accordance with the experimental data. The localization of direct and indirect magnetoexcitons is investigated. Received: 14 April 2000 / Accepted: 17 April 2000 / Published online: 6 September 2000  相似文献   

11.
The type of a phase transition in the quasi-equilibrium system of exciton polaritons in a two-dimensional optical microcavity has been analyzed. It has been shown that, although the system contains two types of bosons undergoing mutual transformations into each other, only one phase transition to the superfluid state with the quasilong-range order occurs in the two-dimensional system. This phase transition is a Kosterlitz-Thouless phase transition. A new physical implementation—excitons in a photon crystal—has been proposed for the Bose condensation of exciton polaritons. The superfluid properties of the ordered phase are discussed, and the superfluid density and Kosterlitz-Thouless transition temperature have been calculated in the low-density approximation.  相似文献   

12.
We theoretically study the relaxation of high energy single particle excitations into molecules in a system of attractive fermions in an optical lattice, both in the superfluid and the normal phase. In a system characterized by an interaction scale U and a tunneling rate t, we show that the relaxation rate scales as ~Ctexp[-αU(2)/t(2)ln(U/t)] in the large U/t limit. We obtain explicit expressions for the temperature and density dependent exponent α, both in the low temperature superfluid phase and the high temperature phase with pairing but no coherence between the molecules. We find that the relaxation rate decreases both with temperature and deviation of the fermion density from half filling. We show that quasiparticle and phase degrees of freedom are effectively decoupled within experimental time scales allowing for observation of ordered states even at high total energy of the system.  相似文献   

13.
Depending on the Hamiltonian parameters, two-component bosons in an optical lattice can form at least three different superfluid phases in which both components participate in the superflow: a (strongly interacting) mixture of two miscible superfluids (2SF), a paired superfluid (PSF) vacuum, and (at a commensurate total filling factor) the super-counter-fluid (SCF) state. We study the universal properties of the 2SF-PSF and 2SF-SCF quantum phase transitions and show that (i) they can be mapped onto each other and (ii) their universality class is identical to the (d+1)-dimensional normal-superfluid transition in a single-component liquid. The finite-temperature 2SF-PSF(SCF) transitions and the topological properties of 2SF-PSF(SCF) interfaces are also discussed.  相似文献   

14.
In order to study the thermal optical effect (TOE) resulting from the axisymmetrical sources of thermal energy at the output mirror of CO2 laser, the Heat Conduction Poisson Equation (HCPE) has been solved in the output mirror. Then the temperature distribution is given. The temperature variations will cause the surface distortion and the phase shift at the output mirror. Therefore, the output laser beam will be subject to thermal optical distortion and phase change. The numerical examples are to confirm our calculated results.  相似文献   

15.
We analyze the ground-state properties and the excitation spectrum of Bose-Einstein condensates of photons and PPs in a two-dimensional optical microcavity. First, using the variational method, we discuss the ground-state phase transition of the two-component system. We also investigate the energy gap between the ground state and the first excited state. Moreover, by investigating the excitation spectrum, we also illustrate how the superfluid behavior of photons and PPs can be associated with the phase transition of the system.  相似文献   

16.
We analyze the ground-state properties and the excitation spectrum of Bose-Einstein condensates of photons and PPs in a two-dimensional optical microcavity. First, using the variational method, we discuss the ground-state phase transition of the two-component system. We also investigate the energy gap between the ground state and the first excited state. Moreover, by investigating the excitation spectrum, we also illustrate how the superfluid behavior of photons and PPs can be associated with the phase transition of the system.  相似文献   

17.
朱瑞 《中国物理快报》2007,24(3):797-799
The Bose Hubbard model describing interacting bosons in an optical lattice is reduced to a simple spin-1 XY model with single-ion anisotropy in the vicinity of the Mott phase. In the strong coupling Mott insulating regime, we propose a mean t~eld theory based on a constraint SU(3) pseudo-boson representation on the effective model and discuss the excitation spectra and the phase transition to the superfluid state. Further to the superfluid phase, we use the coherent-state approach to derive the collective excitation modes. It is found that the Mort phase has two degenerate gapped quadratic excitation spectra which graduate into two degenerate gapless linear ones at the transition point, and one gapless linear mode with one gapped quadratic mode in the superfluid phase.  相似文献   

18.
We numerically investigate mixtures of two interacting bosonic species with unequal parameters in one-dimensional optical lattices. In large parameter regions full phase segregation is seen to minimize the energy of the system, but the true ground state is masked by an exponentially large number of metastable states characterized by microscopic phase separation. The ensemble of these quantum emulsion states, reminiscent of emulsions of immiscible fluids, has macroscopic properties analogous to those of a Bose glass, namely, a finite compressibility in absence of superfluidity. Their metastability is probed by extensive quantum Monte Carlo simulations generating rich correlated stochastic dynamics. The tuning of the repulsion of one of the two species via a Feshbach resonance drives the system through a quantum phase transition to the superfluid state.  相似文献   

19.
In this paper, a topological superfluid phase with Chern number ?? = ±1, possessing gapless edge states and non-Abelian anyonsis designed in a ?? = ±1 topological insulator proximity to ans-wave superfluid on an optical lattice with the effective gauge fieldand layer-dependent Zeeman field coupled to ultracold fermionic atoms’ pseudo spin. Wealso study its topological properties and calculate the phase stiffness by using therandom-phase-approximation approach. Finally we derive the temperature of theKosterlitz-Thouless transition by means of renormalized group theory. Owning to theexistence of non-Abelian anyons, this ?? = ±1 topological superfluid may be a possible candidate fortopological quantum computation.  相似文献   

20.
We show that the dynamics of cold bosonic atoms in a two-dimensional square optical lattice produced by a bichromatic light-shift potential is described by a Bose-Hubbard model with an additional effective staggered magnetic field. In addition to the known uniform superfluid and Mott insulating phases, the zero-temperature phase diagram exhibits a novel kind of finite-momentum superfluid phase, characterized by a quantized staggered rotational flux. An extension for fermionic atoms leads to an anisotropic Dirac spectrum, which is relevant to graphene and high-T(c) superconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号