首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To estimate the ultimate bound and positively invariant set for a dynamic system is an important but quite challenging task in general. This paper has investigated the ultimate bound and positively invariant set of a permanent magnet synchronous motor system. We combine the Lyapunov stability theory with the comparison principle method. For this system, we derive a three-dimensional ellipsoidal ultimate bound and positively invariant set for all the positive values of its parameters σ, γ. In addition, the two-dimensional bound with respect to x ? y are established. Then, it is the two-dimensional estimation about x ? z. Finally, the result is applied to the study of completely chaos synchronization. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme. At the same time, one numerical example illustrating a localization of a chaotic attractor is presented as well. Numerical simulation is consistent with the results of theoretical calculation.  相似文献   

2.
To estimate the ultimate bound and positively invariant set for a dynamic system is an important but quite challenging task in general. In this paper, we attempt to investigate the ultimate bound and positively invariant set for two specific systems, the Lorenz system and a unified chaotic system. We derive an ellipsoidal estimate of the ultimate bound and positively invariant set for the Lorenz system, for all the positive values of its parameters a, b and c, and obtain the minimum value of volume for the ellipsoid. Comparing with the best results in the current literature [D. Li, J. Lu, X. Wu, G. Chen, Estimating the bounds for the Lorenz family of chaotic systems, Chaos Solitons Fractals 23 (2005) 529-534; X. Liao, On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization, Sci. China Ser. E 34 (2004) 1404-1419], our new results fill up the gap of the estimate for the cases of 0<a<1 and 0<b<2 [X. Liao, On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization, Sci. China Ser. E 34 (2004) 1404-1419]. Furthermore, the estimation derived here contains the results given in [D. Li, J. Lu, X. Wu, G. Chen, Estimating the bounds for the Lorenz family of chaotic systems, Chaos Solitons Fractals 23 (2005) 529-534] and [X. Liao, On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization, Sci. China Ser. E 34 (2004) 1404-1419] as special cases. Along the same line, we also provide estimates of cylindrical and ellipsoidal bounds for a unified chaotic system, for its parameter range , and obtain the minimum value of volume for the ellipsoid. The estimate is more accurate than and also extends the result of [D. Li, J. Lu, X. Wu, G. Chen, Estimating the bounds for the Lorenz family of chaotic systems, Chaos Solitons Fractals 23 (2005) 529-534] and [X. Liao, On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization, Sci. China Ser. E 34 (2004) 1404-1419].  相似文献   

3.
This paper has investigated the localization problem of compact invariant sets of a new chaotic system with the help of the iteration theorem and the first order extremum theorem. If there are more iterations, then the estimation for the bound of the system will be more accurate, because the shape of the chaotic attractor is irregular. We establish that all compact invariant sets of this system are located in the intersection of a ball with two frusta and we also compute its parameters. It is a great advantage that we can attain a smaller bound of the chaotic attractor compared with the classical method. One numerical example illustrating a localization of a chaotic attractor is presented as well.  相似文献   

4.
In this article, we investigate globally exponentially attractive sets and chaos synchronization for a hyperchaotic system, namely, Lorenz–Stenflo system. For this system, two ellipsoidal globally exponentially attractive sets are derived based on generalized Lyapunov function theory and the extremum principle of function. Furthermore, we propose linear feedback control with a one, two, three, and four inputs to realize globally exponential synchronization of two four‐dimesional hyperchaotic systems using inequality techniques. Numerical simulations are presented to show the effectiveness of the proposed synchronization scheme. © 2014 Wiley Periodicals, Inc. Complexity 20: 30–44, 2015  相似文献   

5.
Chaos synchronization is a procedure where one chaotic oscillator is forced to adjust the properties of another chaotic oscillator for all future states. This research paper studies and investigates the global chaos synchronization problem of two identical chaotic systems and two non‐identical chaotic systems using the linear active control technique. Based on the Lyapunov stability theory and using the linear active control technique, the stabilizing controllers are designed for asymptotically global stability of the closed‐loop system for both identical and non‐identical synchronization. Numerical simulations and graphs are imparted to justify the efficiency and effectiveness of the proposed scheme. All simulations have been done by using mathematica 9. © 2014 Wiley Periodicals, Inc. Complexity 21: 379–386, 2015  相似文献   

6.
This paper proposes two schemes of synchronization of two four-scorll chaotic attractor, a simple global synchronization and adaptive synchronization in the presence of unknown system parameters. Based on Lyapunov stability theory and matrix measure, a simple generic criterion is derived for global synchronization of four-scorll chaotic attractor system with a unidirectional linear error feedback coupling. This methods are applicable to a large class of chaotic systems where only a few algebraic inequalities are involved. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization method.  相似文献   

7.
This paper studies the synchronization problem for a new chaotic four-dimensional system presented by Qi et al. Two different methods, the passive control method and the impulsive control method, are used to control the synchronization of the four-dimensional chaotic system. Numerical simulations show the effectiveness of the two different methods.  相似文献   

8.
Within the drive-response configuration, this paper considers the synchronization of uncertain chaotic systems based on observers and chaos-based secure communication. Even if there are unknown disturbances and parameters in the drive system, a robust adaptive observer can be used as response system to realize chaotic synchronization. The proposed method is then applied to secure communication. The transmitter is constructed by injecting the information into the drive system with proper manner and one of the transmitting signal is the sum of one of the output and the information signal. The Lur’e chaotic system is considered as an illustrative example to demonstrate the effectiveness of the proposed approaches.  相似文献   

9.
10.
Based on the Lyapunov stability theory and LMI technique, a new sufficient criterion, formulated in the LMI form, is established in this paper for chaos robust synchronization by linear-state-feedback approach for a class of uncertain chaotic systems with different parameters perturbation and different external disturbances on both master system and slave system. The new sufficient criterion can guarantee that the slave system will robustly synchronize to the master system at an exponential convergence rate. Meanwhile, we also provide a criterion to find out proper feedback gain matrix KK that is still a pending problem in literature [H. Zhang, X.K. Ma, Synchronization of uncertain chaotic systems with parameters perturbation via active control, Chaos, Solitons and Fractals 21 (2004) 39–47]. Finally, the effectiveness of the two criteria proposed herein is verified and illustrated by the chaotic Murali–Lakshmanan–Chua system and Lorenz systems, respectively.  相似文献   

11.
In this paper, new adaptive synchronous criteria for a general class of n-dimensional non-autonomous chaotic systems with linear and nonlinear feedback controllers are derived. By suitable separation between linear and nonlinear terms of the chaotic system, the phenomenon of stable chaotic synchronization can be achieved using an appropriate adaptive controller of feedback signals. This method can also be generalized to a form for chaotic synchronization or hyper-chaotic synchronization. Based on stability theory on non-autonomous chaotic systems, some simple yet less conservative criteria for global asymptotic synchronization of the autonomous and non-autonomous chaotic systems are derived analytically. Furthermore, the results are applied to some typical chaotic systems such as the Duffing oscillators and the unified chaotic systems, and the numerical simulations are given to verify and also visualize the theoretical results.  相似文献   

12.
This paper discusses the synchronization of the chaotic system. Some new and less conservative sufficient conditions are established by impulsive control method with channel time-delay and different time-varying parameter uncertainties. An example and its simulations are finally included to visualize the effectiveness and feasibility of the method.  相似文献   

13.
Two novel synchronization criterions are proposed in this paper. It includes drive–response synchronization and adaptive synchronization schemes. Moreover, these synchronization criterions can be applied to a large class of chaotic systems and are very useful for secure communication.  相似文献   

14.
A new adaptive controller is designed to synchronize of a unified chaotic system with uncertainty (unknown parameter, noise perturbation, etc.). It is implemented by using variable structure control. The controller designed here only uses the derivative information of the uncertainty. Even if the uncertainty is time-varying or unbounded, as long as its derivative is bounded, the adaptive controller can guarantee the synchronization of the unified chaotic system with uncertainty. Finally, digital simulation is carried out for Lorenz system, and the results verify the effectiveness of the proposed method.  相似文献   

15.
16.
This paper addresses the adaptive synchronization problem of the drive–driven type chaotic systems via a scalar transmitted signal. Given certain structural conditions of chaotic systems, an adaptive observer-based driven system is constructed to synchronize the drive system whose dynamics are subjected to the system’s disturbances and/or some unknown parameters. By appropriately selecting the observer gains, the synchronization and stability of the overall systems can be guaranteed by the Lyapunov approach. Two well-known chaotic systems: Rössler-like and Chua’s circuit are considered as illustrative examples to demonstrate the effectiveness of the proposed scheme. Moreover, as an application, the proposed scheme is then applied to a secure communication system whose process consists of two phases: the adaptation phase in which the chaotic transmitter’s disturbances are estimated; and the communication phase in which the information signal is transmitted and then recovered on the basis of the estimated parameters. Simulation results verify the proposed scheme’s success in the communication application.  相似文献   

17.
The two-parameter phase space in certain nonlinear system is investigated and the chaotic region of parameters are measured to show its chaotic properties. Within the chaotic parameter region, the complete synchronization, phase synchronization and parameters estimation are discussed in detail by using adaptive synchronization scheme and Lyapunov stability theory. Two changeable gain coefficients are introduced into the controllable positive Lyapunov function and thus the parameter observers. It is found that complete synchronization or phase synchronization occurs with different controllers being used though the parameter observers are the same. Phase synchronization is observed when zero eigenvalue of Jacobi matrix, which is composed of the errors of corresponding variables in the drive and driven chaotic systems. The optimized selection of controllers can induce transition of phase synchronization and complete synchronization.  相似文献   

18.
In this paper, we design a series of chaotic systems that can generate one-directional, two-directional and three-directional multi-scroll chaotic attractors. Then, based upon the properties of these chaotic systems, we construct appropriate Lyapunov functions and design simple linear feedback controls to globally exponentially stabilize and synchronize these chaotic systems. Numerical simulation results are also presented to show the applicability of the proposed control laws.  相似文献   

19.
In this paper, we derive some less stringent conditions for the exponential and asymptotic stability of impulsive control systems with impulses at fixed times. These conditions are then used to design an impulsive control law for the Quantum Cellular Neural Network chaotic system, which drives the chaotic state to zero equilibrium and synchronizes two chaotic systems. An active sliding mode control method is synchronizing two chaotic systems and controlling chaotic state to periodic motion state. And a sufficient condition is drawn for the robust stability of the error dynamics, and is applied to guiding the design of the controllers. Finally, numerical results are used to show the robustness and effectiveness of the proposed control strategy.  相似文献   

20.
We consider globally exponentially attractive sets and synchronization control for a disk dynamo system. First, based on generalized Lyapunov function theory and the extremum principle of function, we derive some new 4D ellipsoid estimations and a polydisk domain estimation of the globally exponentially attractive set of a 4D disk dynamo system without existence assumptions. Our results improve existing results on the globally exponentially attractive set as special cases and can lead to a series of new estimations. Second, we propose linear feedback control with a single input or two inputs to realize globally exponential synchronization of two 4D disk dynamo systems using inequality techniques. Some new sufficient algebraic criteria for the globally exponential synchronization of two 4D disk dynamo systems are obtained analytically. The controllers designed here have a simple structure and less conservation. Finally, numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号