首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文在三维弹性接触边界元法的基础上根据滚子轴承的特点采用面力子单元和板(间隙)单元求解了多列滚子轴承的三维接触压力分布。本方法综合考虑了内外座圈及中间滚子弹性变形的影响,与模拟实验的实测数据相比较具有较好的一致性。本文方法具有数据准备简单、计算速度快、精度高等优点,为求解多列滚动轴承三维接触压力分布提供了一种有效的数值解法。  相似文献   

2.
考虑滚道表面油层分布的滚动轴承润滑分析   总被引:3,自引:0,他引:3  
研究表明供油量对弹流润滑性能产生显著影响.滚动轴承中由于离心力和滚动体的反复滚压,滚道表面上的润滑剂呈现出非均匀分布的特点.大多数润滑剂被推挤到滚道的两侧,致使接触区的入口间隙不能被完全充满,导致乏油润滑,滚动体与滚道间接触压力接近于赫兹压力分布,膜厚较全膜润滑有明显的减小.本文基于润滑剂的流量连续建立滚道表面油层厚度分布模型,考虑润滑接触压力的影响,计算滚道上的侧流量以预测轴承滚道上补给油层厚度及形状随时间的变化规律;进而以此作为滚动体和滚道接触区的入口油层厚度,采用统一Reynolds方程法数值模拟计算每个时刻轴承滚道与滚动体之间的润滑油膜厚度,压力分布等参数,分析轴承在点接触乏油条件下运行的润滑性能.  相似文献   

3.
滚动轴承作为多物体接触系统,具有高度的非线性。为了求解滚动轴承的三维载荷分布,考虑所有滚动体的形状和边界条件相同,利用几何相似条件通过初始位置滚动体的离散模型,得到其他滚动体的离散数据。将所有滚动体看作是一个物体,轴承系统可以用3个物体无摩擦接触边界元法进行模拟计算。考虑全部滚动体作为一个整体的特殊性,叙述了边界积分方程和耦合的矩阵方程的建立,编制了基于滚动体几何相似条件的轴承边界元法Fortran源程序。利用该程序对轧机四列圆锥滚子轴承进行数值模拟,得到轴承的接触压力和载荷,滚动体接触宽度和接触滚动体个数,并说明了方法的有效性。  相似文献   

4.
润滑油在轴承内的分布及其变化规律对轴承的润滑性能有显著影响. 在本文中搭建了滚动轴承模拟试验台,基于激光诱导荧光方法实现了滚动轴承内钢球-外圈接触区附近润滑油分布的观察与测量,获得了润滑油供给油层分布的三维形貌图,研究了不同供油量和转速对轴承内部供给油层分布的影响规律. 试验结果表明充分润滑条件下相邻钢球-外圈接触区供给油池之间会形成相互连接的油带;在高速情况下,钢球-外圈接触区供给油层厚度受前一个接触区尾部空穴影响而减小;供油量的增加会增大表观油池,但并不意味着入口有效供油层的增加.   相似文献   

5.
为了考察应用图案化盘片实现超高密度磁存储时磁头/磁盘界面气体润滑设计理论的有效性,本文设计了1种三维凸台轴承构型,分别使用直接模拟蒙特卡罗方法(DSMC)和气体分子薄膜润滑理论(MGL)方法进行了模拟计算,考察了相对滑动速度、轴承最小间隙、凸台高度和入射速度方向对气体轴承压力分布的影响.结果表明:对于三维凸台微尺度气体轴承,MGL方法的计算结果依然与DSMC方法的结果相差不大.存在凸台接触,轴承间隙为零的情况下,气体轴承仍然具有一定的承载能力,且压力分布形状随凸台高度的变化表现出与常规非接触式气体轴承不同的规律.  相似文献   

6.
滚动轴承接触问题的有限元分析   总被引:1,自引:0,他引:1  
本文用代数方程集的分段分片解法与接触条件的降阶算法,完成了滚动轴承平面弹性接触的有限元分析.综合考虑了内、外座圈与滚柱的变形,着重于有间隙薄壁轴承的接触区与接触力分布.所得结果同相应的光弹实验结果极为一致,从而为轴承接触问  相似文献   

7.
针对轴承和齿轮等零部件接触压力分布不均问题,提出了一种极小化极大接触压力的弹性交界面修形新方法,仅需要一次结构分析就可以实现理想的修形结果。基于弹性接触理论与有限元法,推导建立了接触节点修形量与接触压力之间的数学方程;以极小化各接触节点的最大接触压力为目标,建立了计算修形量的极小极大模型;并利用最优化方法将其转化为线性规划问题,有效提高了求解的全局收敛性和计算效率。通过两个弹性接触修形实例,验证了新方法对一般弹性接触修形问题的适用性和高效性。  相似文献   

8.
静电微电机微转子接触动力学特性分析   总被引:4,自引:0,他引:4  
张文明  孟光 《力学学报》2005,37(6):756-763
提出静电微电机中转子和固定轴承间相互接触的数学模型,对微尺度下的接触应力和应变 特性进行理论推导,分析静电微电机几何参数、静电力、材料特性及加载电压对接触宽度、 应力和应变特性的影响,对比研究不同工况下接触宽度、接触应力和应变的变化,并就相同 的问题进行有限元分析,探讨摩擦系数对接触区von Mises应力、应变和接触压力 的影响,结果表明有限元模拟所得接触应力和应变分布与数学 模型的解析值较为相似.  相似文献   

9.
黏弹性流体在圆管内流动的谱方法模拟计算   总被引:2,自引:0,他引:2  
 采用修正Jeffreys模型来描述聚丙烯酰胺水溶液流变特性. 首先用具有二阶精度的差分法与拟谱法求解幂率模型, 分别与解析解进行比较, 结果表明拟谱法具有极高精度. 然后用拟谱法求解PAM水溶液在圆管中流动, 得到速度分布、应力分布,为三维模拟作准备.  相似文献   

10.
针对隧道正交下穿既有结构施工力学响应的预测问题, 建立了考虑多体接触作用的隧道施工扰动下地层?基础体系力学响应解析预测方法. 该方法将地层视为均匀各向同性的线弹性体, 通过引入接触理论考虑地层与基础间的接触作用, 并提出“隧道开挖与基础作用换序求解”的新解析思路,确定了最终状态接触压力, 解决了隧道开挖及多体接触耦合作用下接触压力难以确定的问题, 进而依据弹性力学解的叠加性获得目标问题的解析解答. 通过对比该解析解与ABAQUS数值解, 发现两者吻合良好. 基于本方法开展参数分析, 研究了地层参数、隧道埋深、隧道边界径向位移以及外荷载集度对地表竖向附加位移、接触压力和基础内力分布的影响规律. 结果表明: 本方法可准确预测地层?基础体系的接触力学响应, 实现了地层与基础间接触力学行为的量化描述; 地层杨氏模量和泊松比对地层?基础体系力学响应的影响分别侧重于变形和受力, 而隧道埋深和隧道边界径向位移变化对受力变形均有较大影响; 地层位移受隧道开挖扰动与多体接触效应的耦合作用, 且接触影响范围局限在接触区域附近; 隧道开挖使接触压力产生“中间释放、端部集中”的重分布现象, 并由此造成基础内力的大幅增长. 当开挖扰动剧烈时, 甚至产生竖向位移不连续的脱空接触现象. 研究成果对城市浅埋隧道施工影响下地层?基础体系力学响应预测具有重要的理论意义和应用价值.   相似文献   

11.
滑动轴承二维动态摩擦接触的分析研究   总被引:1,自引:1,他引:1  
应用边界单元法研究了滑动轴承动态摩擦时的接触力学性质,揭示了接触压力分布的不对称性;讨论了载荷,摩擦系数等因素对不对称性的影响,认为摩擦系数可使峰值接触压力降低和接触面积增加,增大载荷会使接触压力分布的不对称性更为明显,接触压力分布的不对称意味着磨损分布的不对称。同时分析了实际工作中滑动轴承摩擦副间的当量摩擦系数,指出在滑动试验研究中应采了当量摩擦系数。  相似文献   

12.
粗糙表面的弹塑性接触研究   总被引:1,自引:1,他引:0  
建立了综合载荷作用下粗糙表面弹塑性接触的确定性模型,考虑了微凸峰接触的弹塑性变形阶段,数值求解得到实际接触面积、压力分布和微凸峰塑性形变.分析了实际接触面积与法向载荷的关系,并研究了点接触的椭圆参数对上述关系的影响.建立了结点增长模型,分析了结点增长与滑动摩擦系数的关系以及滑动摩擦系数随椭圆参数的变化.结果表明:随着法向载荷增大,实际接触面积与法向载荷之间的非线性关系愈加显著;椭圆参数越大,实际接触面积越小,选择较小的椭圆参数可降低平均接触压力;结点增长的速率随滑动摩擦系数增大而增大;表面剪切作用力使最大Mises应力值升高,疲劳裂纹的发生源向表面靠近;重载时选择较小的滚动轴承沟曲率半径系数有利于减小摩擦功耗.  相似文献   

13.
油膜厚度预测在评估弹流润滑(EHL)下角接触球轴承的性能和耐久性方面发挥着重要的作用. 耦合拟静力学理论和自旋下椭圆接触弹流模型,以干接触角接触球轴承拟静力学分析方法为基础,建立了定压和定位预紧方式下考虑弹流润滑和钢球自旋运动的角接触球轴承的拟静力学分析模型. 采用快速傅里叶变换(FFT)计算椭圆接触的弹性变形,运用Gauss-Seidel迭代方法求解Reynolds方程,得到自旋弹流模型的完全数值解,将其代入轴承拟静力学模型中迭代,得到轴承内部接触载荷、三维接触压力及三维膜厚分布. 对采用不同预紧方式的SKF7210型角接触球轴承进行分析,结果表明:富油润滑下,当轴承转速从0增大到15 000 r/min时,定压预紧时内圈轴向位移减小17.83%,而定位预紧时内圈承受的轴向载荷增大23.17%;定压预紧方式下球与内外滚道间膜厚均略大于定位预紧. 此外,不同预紧方式下,外圈上的中心膜厚大于内圈10%. 与干接触相比,定压下考虑弹流润滑内圈上接触载荷略大0.64%.   相似文献   

14.
低速下润滑接触区补充供油机制的研究   总被引:1,自引:1,他引:0  
在滚动轴承运行的过程中,滚道上的润滑剂在滚动体的反复碾压下,厚度不断减小,轴承最终进入乏油润滑状态.为了解释长期工作在乏油条件下的轴承依旧能够保持较长时间的良好工作状态,有必要研究在轴承中是否存在某种自发的补充供油机制.本文作者基于球盘接触模型,分别考虑毛细力和分离压力在润滑油迁移过程中的作用,建立赫兹接触区附近油层分布模型,并以此修正弹流计算中的入口供油条件,采用统一Reynolds方程法计算在静止或低速条件下的润滑油膜厚度和压力分布,研究毛细力和分离压力的补充供油机制对润滑条件的改善作用.  相似文献   

15.
罗天宇  孙东  罗继伟 《力学与实践》2014,36(2):198-200,167
首先分析了滚动轴承的弹性接触变形能,根据能量守恒原理,提出了轴承变形能与自由落体势能守恒的关联方程,并完成了对轴承冲击动载荷的数值求解. 对于实践中常见的缓冲弹簧-轴承系统,根据弹簧和轴承的刚度比来确定它们各自分担的冲击能量,在此基础上对轴承的动载荷系数进行了计算,文中给出的具体算例与工程实际较为符合. 本文提出的方法可以作为确定轴承冲击载荷的参考依据.  相似文献   

16.
高速滚动轴承滑蹭试验系统研制   总被引:1,自引:0,他引:1  
为研究高速、超高速条件下精密滚动轴承打滑蹭伤机理,自行设计并研制高速滚动轴承滑蹭试验系统.该系统可以通过调节影响高速滚动轴承打滑蹭伤的各种滑差组合因素,用以模拟滚动体与内外圈的动态接触情况,进而分析高速滚动轴承的滑蹭机理.详细介绍了系统的工作原理、系统构成及其主要功能.以圆柱滚子轴承滑蹭试验为例,初步研究了滑差率、内圈转速、径向载荷、润滑状况等滑差组合因素作用下高速滚动轴承的滑蹭规律,验证了该系统的可行性与有效性.本文所开发的试验系统简单便捷,易于扩展,可为未来超高速、超精密滚动轴承设计提供一定的参考与支持.  相似文献   

17.
采用边界元法对高度非线性的滚动轴承接触问题进行了研究。利用轴承边界单元模拟轴承接触单元,采用赫兹接触理论对滚动体与轴承内外圈的接触宽度进行修正;根据轧机圆锥滚子轴承安装配合时轴承内圈与轧辊、轴承外圈与轴承座均采用松配合的特点,在多物体有摩擦弹性接触的边界元法基础上,编制了四物体有摩擦弹性接触的专用轴承边界元法计算程序;并对轧机四列圆锥滚子轴承进行了数值分析,验证了算法的可行性和有效性。结果表明:四列滚动体上圆锥滚子小端受较大的压力,且滚动体端部压力远大于中部压力;滚动体承受的轴向压力与四列圆锥轴承的锥度分布一致,最大应力出现在第一列滚动体靠近辊身侧的位置;各个滚动体的接触宽度与滚动体上承受的径向载荷分布规律一致,非轴承接触面所受载荷的分布与承受载荷的滚动体的位置相对应。  相似文献   

18.
表面形貌对滑动接触界面摩擦行为的影响   总被引:2,自引:5,他引:2  
为了研究表面形貌对拉延形成的滑动接触界面摩擦行为的影响,设计了一种新型的摩擦试验装置.在油润滑条件下,针对具有单向沟槽、规则圆形凹坑和随机表面的铝合金试样,以不同滑动速度与接触压力进行一系列摩擦试验.利用非接触式三维轮廓仪测量出试验前后试样的三维表面形貌参数,并选取表面高度算术平均偏差Sa,表面支承指数Sbi,中心区空体体积Vvc和谷区空体体积Vvv来分析滑动接触界面表面形貌的变化规律.结果表明:规则圆形凹坑表面比单向沟槽表面和随机表面具有较低的摩擦系数;在相对低的接触压力下,3种表面的摩擦系数随着接触压力的增大而减小,但在高的接触压力下,3种表面的摩擦系数随着接触压力的增大而增大;在接触压力一定的情况下,3种表面的摩擦系数对滑动速度有显著依赖性;表面形貌、滑动速度和接触压力是影响滑动接触界面摩擦行为的重要因素.  相似文献   

19.
构筑了轴向解析、周向有限元压力分布的一维变粘度场有限宽轴承模型。在绝热边界条件下,忽略泊肃叶流项对速度的影响,不考虑温度轴向变化并沿油膜厚度方向积分,三维能量方程可降阶为平均温度场只沿周向分布的一维形式,结合滑动轴承非线性油膜力的一维直接解法,能量方程与雷诺方程可分别求解,既考虑了温粘效应对滑动轴承非线性动力学性能的影响,又提供了无需迭代直接确定油膜破裂边界和求解非线性油膜力的快速新方法。作为应用,针对进油槽位于水平两侧的椭圆瓦轴承进行了动力润滑热效应分析,与工程数据比较,计算结果吻合,证明该模型合理,适用于工程上多瓦轴承的分析计算。  相似文献   

20.
本文中提出了一种求解有限长径向滑动轴承非线性油膜力的近似解析方法.在滑动轴承-转子系统非线性动力行为分析中,油膜力计算模型通常采用"π"油膜假设,但是,实际工况中油膜的存在区域并非是"π"区域,运行时油膜中出现气穴,破裂成条纹状(即具有Reynolds边界条件).本文中的近似解析方法采用Reynolds边界条件,基于变分原理,运用分离变量法求解油膜的压力分布,其中油膜压力的周向分离函数通过无限长轴承的油膜压力分布获得,油膜的破裂终止位置角通过连续条件确定,轴向分离函数运用变分原理并结合周向函数求得.计算结果表明:本文中提出的方法和有限元方法的结果吻合得很好.在此基础上,分析了一些轴承参数对油膜压力分布的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号