首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a novel and effective method for controlling epidemic spreading on complex networks, especially on scale-free networks. The proposed strategy is performed by deleting edges according to their significances (the significance of an edge is defined as the product of the degrees of two nodes of this edge). In contrast to other methods, e.g., random immunization, proportional immunization, targeted immunization, acquaintance immunization and so on, which mainly focus on how to delete nodes to realize the control of epidemic spreading on complex networks, our method is more effective in realizing the control of epidemic spreading on complex networks, moreover, such a method can better retain the integrity of complex networks.  相似文献   

2.
王亚奇  蒋国平 《物理学报》2011,60(6):60202-060202
考虑网络交通流量对病毒传播行为的影响,基于平均场理论研究无标度网络上的病毒免疫策略,提出一种改进的熟人免疫机理.理论分析表明,在考虑网络交通流量影响的情况下,当免疫节点密度较小时,随机免疫几乎不能降低病毒的传播速率,而对网络实施目标免疫则能够有效抑制病毒的传播,并且选择度最大的节点进行免疫与选择介数最大的节点进行免疫的效果基本相同.研究还发现,对于网络全局信息未知的情况,与经典熟人免疫策略相比,所提出的免疫策略能够获得更好的免疫效果.通过数值仿真对理论分析进行了验证. 关键词: 无标度网络 病毒传播 交通流量 免疫策略  相似文献   

3.
王亚奇  蒋国平 《物理学报》2010,59(10):6725-6733
提出一种新的流行病传播模型,基于平均场理论,研究传染媒介和传播延迟同时存在对网络中流行病传播行为的影响.理论分析和仿真结果表明,传染媒介和传播延迟同时存在显著增强了网络中流行病爆发的危险性,并加速了流行病的传播.研究还发现,对于给定的有效传播率,均匀网络中流行病的感染程度分别与传染媒介的传染概率和传播延迟呈对数关系,无标度网络中流行病的感染程度与传染媒介的传染概率呈幂率关系,而与传播延迟之间则存在线性关系。  相似文献   

4.
复杂网络中考虑不完全免疫的病毒传播研究   总被引:2,自引:0,他引:2       下载免费PDF全文
王亚奇  蒋国平 《物理学报》2010,59(10):6734-6743
复杂网络中不完全免疫包括免疫失败和免疫失效两种情况,本文研究两者同时存在对网络病毒传播行为的影响,基于平均场理论,提出一种新的传播模型.理论分析表明,免疫失败和免疫失效同时存在显著降低了网络的传播临界值,增强了病毒的感染程度.根据传播临界值与免疫节点密度、免疫成功率以及免疫失效率之间的关系,给出有效控制网络病毒传播的策略.通过数值仿真进行验证。  相似文献   

5.
Meng Yang 《Physica A》2011,390(12):2408-2413
In this paper, we propose a modified susceptible-infected-susceptible model with an infective medium, which describes epidemics transmitted through an infective medium on complex networks. We examine epidemic thresholds for disease spreading by using this new model and compare it with the standard SIS model and another SIS model having an infective medium. We also study and compare the effects of the uniform immunization scheme on different models. We finally give some necessary and sufficient conditions for the global stability of the new model.  相似文献   

6.
Yubo Wang  Jie Hu  Limsoon Wang 《Physica A》2009,388(12):2535-2546
Scale-free networks are prone to epidemic spreading. To provide cost-effective protection for such networks, targeted immunization was proposed to selectively immunize the hub nodes. In many real-life applications, however, the targeted immunization may not be perfect, either because some hub nodes are hidden and consequently not immunized, or because the vaccination simply cannot provide perfect protection. We investigate the effects of imperfect targeted immunization in scale-free networks. Analysis and simulation results show that there exists a linear relationship between the inverse of the epidemic threshold and the effectiveness of targeted immunization. Therefore, the probability of epidemic outbreak cannot be significantly lowered unless the protection is reasonably strong. On the other hand, even a relatively weak protection over the hub nodes significantly decreases the number of network nodes ever getting infected and therefore enhances network robustness against virus. We show that the above conclusions remain valid where there exists a negative correlation between nodal degree and infectiousness.  相似文献   

7.
We abstract bus transport networks (BTNs) to complex networks using the Space P approach. First, we select three actual BTNs in three major cities in China, namely, Beijing, Shanghai and Hangzhou. Using the SIS model, we simulate and study the epidemic spreading in the three BTNs. We obtain the density of infected vertices varying with time and the stationary density of infected vertices varying with infection rate. Second, we simulate and study the epidemic spreading in a recently introduced BTN evolution model, the network properties of which correspond well with those of actual BTNs. Third, we use mean-field theory to analyze the epidemic dynamics behavior of the BTN evolution model and obtain the theoretical epidemic threshold of this model. The theoretical value agrees well with the simulation results. Based on the work in this paper, we provide the following possible forecasts for epidemic dynamics in actual BTNs. An actual BTN should have a finite positive epidemic threshold. If the effective infection rate is above this threshold, the epidemic spread in the network and the density of infected vertices finally stabilizes in a balanced state. Below this threshold, the number of infected vertices decays exponentially fast and the epidemic cannot spread on a large scale.  相似文献   

8.
Heterogeneous mean-field theory is commonly used methodology to study dynamical processes on complex networks,such as epidemic spreading and phase transitions in spin models.In this paper,we propose an improved heterogeneous mean-field theory for studying the Ising model on complex networks.Our method shows a more accurate prediction in the critical temperature of the Ising model than the previous heterogeneous mean-field theory.The theoretical results are validated by extensive Monte Carlo simulations in various types of networks.  相似文献   

9.
巩永旺  宋玉蓉  蒋国平 《中国物理 B》2012,21(1):10205-010205
In this paper, we study the epidemic spreading in scale-free networks and propose a new susceptible-infected- recovered (SIR) model that includes the effect of individual vigilance. In our model, the effective spreading rate is dynamically adjusted with the time evolution at the vigilance period. Using the mean-field theory, an analytical result is derived. It shows that individual vigilance has no effect on the epidemic threshold. The numerical simulations agree well with the analytical result. Furthermore, we investigate the effect of individual vigilance on the epidemic spreading speed. It is shown that individual vigilance can slow the epidemic spreading speed effectively and delay the arrival of peak epidemic infection.  相似文献   

10.
Recently, some studies have revealed that non-Poissonian statistics of human behaviors stem from the hierarchical geographical network structure. On this view, we focus on epidemic spreading in the hierarchical geographical networks and study how two distinct contact patterns (i.e., homogeneous time delay (HOTD) and heterogeneous time delay (HETD) associated with geographical distance) influence the spreading speed and the variability of outbreaks. We find that, compared with HOTD and null model, correlations between time delay and network hierarchy in HETD remarkably slow down epidemic spreading and result in an upward cascading multi-modal phenomenon. Proportionately, the variability of outbreaks in HETD has the lower value, but several comparable peaks for a long time, which makes the long-term prediction of epidemic spreading hard. When a seed (i.e., the initial infected node) is from the high layers of networks, epidemic spreading is remarkably promoted. Interestingly, distinct trends of variabilities in two contact patterns emerge: high-layer seeds in HOTD result in the lower variabilities, the case of HETD is opposite. More importantly, the variabilities of high-layer seeds in HETD are much greater than that in HOTD, which implies the unpredictability of epidemic spreading in hierarchical geographical networks.  相似文献   

11.
万贻平  张东戈  任清辉 《物理学报》2015,64(24):240501-240501
网络谣言传播是网络传播动力学的重要课题之一. 网络谣言传播常常同时混杂谣言感染和谣言清除两个过程, 对这一现象的分析可以帮助我们更好地认识社会网络中的信息传播. 本文在susceptible-infective-refractory谣言传播模型的基础上增加谣言清除者, 定义了谣言感染和谣言清除的规则, 提出SIERsEs谣言传播模型, 建立了模型的平均场方程, 从理论上分析了谣言传播的稳态, 并求解出谣言传播的感染阈值和清除阈值. 仿真计算分析了感染和清除过程同时作用时, 感染率、清除率和网络平均度对谣言传播的影响. 研究发现, 网络平均度过小或过大, 谣言传播稳定后的影响力都将处于低水平. 分析了目标免疫和熟人免疫等传统免疫策略的不足, 针对网络环境下谣言抑制的特点, 提出主动免疫和被动免疫两种网络谣言免疫策略, 并研究了传播者遗忘率、清除者遗忘率和开始免疫时间参数对这两种谣言免疫策略有效性的影响. 需要重视的是: 研究发现一些直观看来有效的谣言抑制措施反而可能提高谣言的影响力. 研究结果有助于深化对于网络传播动力学的理解, 同时为发展有效的网络谣言抑制策略提供新的思路.  相似文献   

12.
Disease spreading in structured scale-free networks   总被引:2,自引:0,他引:2  
We study the spreading of a disease on top of structured scale-free networks recently introduced. By means of numerical simulations we analyze the SIS and the SIR models. Our results show that when the connectivity fluctuations of the network are unbounded whether the epidemic threshold exists strongly depends on the initial density of infected individuals and the type of epidemiological model considered. Analytical arguments are provided in order to account for the observed behavior. We conclude that the peculiar topological features of this network and the absence of small-world properties determine the dynamics of epidemic spreading. Received 16 October 2002 Published online 4 February 2003 RID="a" ID="a"e-mail: yamir@ictp.trieste.it  相似文献   

13.
Shunjiang Ni  Wenguo Weng  Hui Zhang 《Physica A》2011,390(23-24):4528-4534
We investigate by mean-field analysis and extensive simulations the effects of social impact on epidemic spreading in various typical networks with two types of nodes: active nodes and passive nodes, of which the behavior patterns are modeled according to the social impact theory. In this study, nodes are not only the media to spread the virus, but also disseminate their opinions on the virus—whether there is a need for certain self-protection measures to be taken to reduce the risk of being infected. Our results indicate that the interaction between epidemic spreading and opinion dynamics can have significant influences on the spreading of infectious diseases and related applications, such as the implementation of prevention and control measures against the infectious diseases.  相似文献   

14.
黄斌  赵翔宇  齐凯  唐明  都永海 《物理学报》2013,62(21):218902-218902
在复杂网络研究中, 对于网络结构特征的分析已经引起了人们的极大关注, 而其中的网络着色问题却没有得到足够的重视. 为了理解网络结构与着色之间的关系, 本文研究了WS, BA网络以及不同宏观结构参量对于正常K色数的影响, 发现最大团数可以大致反映正常K色数的变化趋势, 而网络的平均度和匹配系数比异质性和聚类系数对于色数的影响更大. 对于一些实际网络的正常着色验证了本文的分析结果. 对复杂网络的顶点进行着色后, 根据独立集内任意两个顶点均不相邻的特点, 我们提出了基于独立集的免疫策略. 与全网随机免疫相比, 基于独立集的免疫策略可令网络更为脆弱, 从而有效抑制疾病的传播. 基于网络着色的独立集提供了一种崭新的免疫思路, 作为一个简单而适用的平台,有助于设计更为有效的免疫策略. 关键词: 复杂网络 正常着色 独立集 免疫策略  相似文献   

15.
Alen Lan?i? 《Physica A》2011,390(1):65-76
Disease spreading on complex networks is studied in SIR model. Simulations on empirical complex networks reveal two specific regimes of disease spreading: local containment and epidemic outbreak. The variables measuring the extent of disease spreading are in general characterized by a bimodal probability distribution. Phase diagrams of disease spreading for empirical complex networks are introduced. A theoretical model of disease spreading on m-ary tree is investigated both analytically and in simulations. It is shown that the model reproduces qualitative features of phase diagrams of disease spreading observed in empirical complex networks. The role of tree-like structure of complex networks in disease spreading is discussed.  相似文献   

16.
We introduce a dynamical model of coupled directed percolation systems with two particle species. The two species A and B are coupled asymmetrically in that A particles branch B particles, whereas B particles prey on A particles. This model may describe epidemic spreading controlled by reactive immunization agents. We study nonequilibrium phase transitions with attention focused on the multicritical point where both species undergo the absorbing phase transition simultaneously. In one dimension, we find that the inhibitory coupling from B to A is irrelevant and the model belongs to the unidirectionally coupled directed percolation class. On the contrary, a mean-field analysis predicts that the inhibitory coupling is relevant and a new universality appears with a variable dynamic exponent. Numerical simulations on small-world networks confirm our predictions.  相似文献   

17.
鲁延玲  蒋国平  宋玉蓉 《中国物理 B》2012,21(10):100207-100207
This paper presents a modified susceptible-infected-recovered(SIR) model with the effects of awareness and vaccination to study the epidemic spreading on scale-free networks based on the mean-field theory.In this model,when susceptible individuals receive awareness from their infected neighbor nodes,they will take vaccination measures.The theoretical analysis and the numerical simulations show that the existence of awareness and vaccination can significantly improve the epidemic threshold and reduce the risk of virus outbreaks.In addition,regardless of the existence of vaccination,the awareness can increase the spreading threshold and slow the spreading speed effectively.For a given awareness and a certain spreading rate,the total number of infections reduces with the increasing vaccination rate.  相似文献   

18.
Wen-Jie Bai  Tao Zhou 《Physica A》2007,384(2):656-662
In this paper, we investigate two major immunization strategies, random immunization and targeted immunization, of the susceptible-infected (SI) model on the Barabási-Albert (BA) networks. For the heterogeneous structure, the random strategy is quite ineffective if the vaccinated proportion is small, while the targeted one which prefers to vaccinate the individuals with the largest degree can sharply depress the epidemic spreading even only a tiny fraction of population are vaccinated. The analytical solution is also obtained, which can capture the trend of velocity change vs. the amount of vaccinated population.  相似文献   

19.
冯运  丁李  黄蕴涵  关治洪 《中国物理 B》2016,25(12):128903-128903
In this paper, we study epidemic spreading on random surfer networks with infected avoidance(IA) strategy. In particular, we consider that susceptible individuals' moving direction angles are affected by the current location information received from infected individuals through a directed information network. The model is mainly analyzed by discrete-time numerical simulations. The results indicate that the IA strategy can restrain epidemic spreading effectively. However,when long-distance jumps of individuals exist, the IA strategy's effectiveness on restraining epidemic spreading is heavily reduced. Finally, it is found that the influence of the noises from information transferring process on epidemic spreading is indistinctive.  相似文献   

20.
Periodic Wave of Epidemic Spreading in Community Networks   总被引:1,自引:0,他引:1       下载免费PDF全文
It was reported by Cummings ef al. [Nature 427 (2004) 344] that there are periodic waves in the spatiotemporal data of epidemics. For understanding the mechanism, we study the epidemic spreading on community networks by both the SIS model and the SIRS model. We find that with the increase of infection rate, the number of total infected nodes may be stabilized at a fixed point, oscillatory waves, and periodic cycles. Moreover, the epidemic spreading in the SIS model can be explained by an analytic map.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号