首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This Tutorial Review shows the behaviour of water in micro- and nanofluidic systems. The chemical potential of water ('water potential') conveniently describes the energy level of the water at different locations in and around the system, both in the liquid and gaseous state. Since water moves from high to low potential, the water potential enables us to predict and describe the direction of water movement inside systems and between systems and their surroundings. Practical examples of microfluidic devices illustrate the different contributions to the water potential (capillary, gravitational, entropic (osmotic) in liquid water; the partial vapour pressure in atmospheric water and van der Waals forces in water films) and the resulting water movement.  相似文献   

2.
The microcapsules containing water were prepared with the suspension polymerization method, and the fundamental investigation was performed to make the effect of microencapsulated water on expansion behavior of microcapsules clear. In the experiment, only the volume of water added into styrene monomer was changed to make the effect of microencapsulated water volume clear, and three kinds of water contents were measured: namely, the initial water content for the microcapsules just after preparation, the middle water content for the microcapsules dried at 44°C for 24 hours, and the final water content for the microcapsules dried at 110°C for 1 hours. With increasing the added water volume, the initial water content increased; the middle water content decreased after increasing halfway through, and the final water content gradually decreased. Also, with increasing the added water volume, the drying rate of the microcapsules increased and the expansion ratio decreased. The water volume required to expand the microcapsules, in other words, the critical shell thickness required to prevent evaporation of water and to contribute to expansion of microcapsules is discussed.  相似文献   

3.
A method and apparatus for measuring the relationship between air–water capillary pressure and water saturation in PEMFC gas diffusion layers is described. Capillary pressure data for water injection and withdrawal from typical GDL materials are obtained, which demonstrate permanent hysteresis between water intrusion and water withdrawal. Capillary pressure, defined as the difference between the water and gas pressures at equilibrium, is positive during water injection and negative during water withdrawal. The results contribute to the understanding of liquid water behavior in GDL materials which is necessary for the development of effective PEMFC water management strategies.  相似文献   

4.
5.
The phase transition behavior of 1,2-di-n-heptadecanoyl phosphatidylcholme (DHPC)with and without water has been studied by use of differential scanning calorimetry It was found by experiment that the glass transition occurred at first during the first heating of a sample of DHPC without water and then the sample underwent melting as an ordinary crystal.Therefore the sample of DHPC without water was a glassy crystal However,the DHPC sample crystallizing from melt was an ordinary crystal From the relationship between the total melting enthalpy Qf of freezable water and the water content h,it was concluded that the water contained in the DHPC samples might exist in three states recognizable thermodynamically.The water in the first state was an unfreezable water It was the water bound directly with the head groups of the phospholipid,i.e.the primary hydration water Every head group might bind seven such molecules of water.The water in the second state was the secondary hydration water,us melt ing point was  相似文献   

6.
彭旭红  方建  王宏奎  赵继华  沈伟国 《化学学报》2011,69(19):2253-2258
用FT-IR法研究了水/辛烷基苯酚聚氧乙烯醚(Triton X-100)/正丁醇/环己烷组成的反相微乳液体系水池中存在的束缚、结合和自由3种不同的水的状态.分别考察了水与表面活性剂物质的量之比(Rw)、水油比φ(水与环己烷的质量比)、助剂正丁醇的含量对3种状态水含量的影响.发现在φ=2.8、m正丁醇/mTriton X...  相似文献   

7.
Water swelling rubber (WSR) was prepared by reaction blending SBR andsodium polyacrylate (PAANa). The existing states of water in the WSR was studied bymeans of DSC and TG. It was found that water exists in three states: nonfreezing water,bound freezable water and free water. The relationships between water states and structureof PAANa were investigated. The results showed that the amount of non-freezing waterwas related to total water content, and the ratio of non-freezing water versus -COONagroups on PAANa (mol/mol) was about 4. However, total water content slightly affectedthe content of bound freezable water and remarkably affected the amount of free waer.  相似文献   

8.
三维壳聚糖材料中水的状态与其性能的关系   总被引:2,自引:0,他引:2  
利用原位沉析法制备了具有层状结构的高强度三维壳聚糖(chitosan,CS)材料,由于CS分子结构中存在大量的亲水基团,容易吸附水分子.通过热分析(TGA,DSC)测试发现吸水后的CS材料中的水分是以3种不同的状态存在,结合水、中间态水和自由水.结合力学性能的方法分析不同状态的水对材料性能的影响.结果表明,结合水和CS以氢键紧密结合,有较好的热稳定性,对材料的力学性能有增强作用;CS棒材在环境中吸附的中间态水相当于一种增塑剂,随着水含量的增加,材料力学性能的下降符合Fermi经验公式;中间态水达到饱和之后,自由水开始出现,自由水和CS之间的作用力很弱,温度较低时会结晶成冰.自由水的渗透与中间态水比对材料的力学性能没有明显的影响.  相似文献   

9.
Water interfaces provide the platform for many important biological, chemical, and physical processes. The water–air interface is the most common and simple aqueous interface and serves as a model system for water at a hydrophobic surface. Unveiling the microscopic (<1 nm) structure and dynamics of interfacial water at the water–vapor interface is essential for understanding the processes occurring on the water surface. At the water interface the network of very strong intermolecular interactions, hydrogen‐bonds, is interrupted and the density of water is reduced. A central question regarding water at interfaces is the extent to which the structure and dynamics of water molecules are influenced by the interruption of the hydrogen‐bonded network and thus differ from those of bulk water. Herein, we discuss recent advances in the study of interfacial water at the water–air interface using laser‐based surface‐specific vibrational spectroscopy.  相似文献   

10.
Summary Drinking water in developed countries is usually treated by the water-purification system, while in developing countries untreated natural water such as well water, river water, rain water, or pond water are used. On the other hand, many kinds of mineral water bottled in plastic containers are sold as drinking water with or without gas in urban areas in many countries. Seawater under hundreds meters from the surface is also bottled and sold as drinking water with advertising good mineral balance. Various element concentrations in water samples for drinking were analyzed, and then it was considered the effects of elements on human health.  相似文献   

11.
Water plays a critical role in the structure and function of proteins, although the experimental properties of water around protein structures are not well understood. The water can be classified by the separation from the protein surface into bulk water and hydration water. Hydration water interacts closely with the protein and contributes to protein folding, stability, and dynamics, as well as interacting with the bulk water. Water potential functions are often parametrized to fit bulk water properties because of the limited experimental data for hydration water. Therefore, the structural and energetic properties of the hydration water were assessed for 105 atomic resolution (相似文献   

12.
The states of water in sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane/water reverse(W/O) microemulsions system have been investigated by using Fourier transform infrared spectroscopy(FT-IR) technique. The broad peak obtained for hydroxy(O-H) of water has been resolved by least square curve-fitting. It has been observed that the water solubilized in microemul-sion droplets has four states, i.e. bound water with sulfo-group, free water, bound water with sodium counterion in the water pool of microemulsion droplets and a small amount of trapped water in the palisade layer of microemulsion droplets. The following have also been determined: the aggregation number (n), the radius of the water pool in the microemulsions(rw), the thickness of the bound water with sulfo-group(d1), the thickness of the bound water with sodium counterion(d2), the total thickness of the bound water (d) and the effective area of head groups of AOT(AAOT).  相似文献   

13.
The change in the nanoscopic structure and bound state of water in the protein gel were investigated using positron annihilation lifetime spectroscopy (PALS) and differential scanning calorimetry (DSC). Gelatin was used as a protein. To examine the bound state of water in gelatin gel, the amount of freezing and nonfreezing water in gelatin gels were evaluated by fusion enthalpy of DSC curves. Below water content of 40% (w/w), the whole amount of water was nonfreezing water, whereas above water content of 40% (w/w), the amount of freezing water increased according to increase in water content. To investigate the nanoscopic spatial structure under coexistence of polymer and water, positron annihilation lifetime measurement was performed. The lifetime of o‐Ps or the pore size increased according to increase in water content, particularly below the water content of 40% (w/w). When the water penetrates into the gelatin network, the water molecules form hydrogen bonds with hydrophilic groups inside the helical structure in gelatin gel. The water molecules inside the helical structure expand the structure outward, leading to increase in pore size. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2031–2037, 2007.  相似文献   

14.
The fractionation factor of tritium between water and DNA as well as between water and the first hydration shell of DNA is determined. For this purpose the sublimation kinetics of water from DNA dissolved in water were determined at -200 °C and tritium was measured in the remaining water free DNA. The last sublimating water fractions showed a tritium level of about 1.4, the residual water free DNA about 1.9 units above the bulk water. The tritium accumulation inside and near DNA is attributed to the thermodynamic triton-proton exchange isotope effect existing between the strong hydrogen bridges of water and weaker hydrogen bridges as well as inside DNA as between the first hydration shell and DNA.  相似文献   

15.
周亚平  Lentz  H. 《物理化学学报》1992,8(1):109-112
水在固体表面或在毛细孔玻璃中的性质,一直是人们感兴趣的问题。而靠近固体表面的水,其性质不同于体相(Bulk)水,也是为人所知的事实。已经知道,邻近水的热容、密度、粘度、电导及结构等都不同于体相水。但邻近水的厚度究竟为多少,或者说,这种固体表面对水的性质影响究竟是长程的还是短程的,目前还没有统一的结论。用压汞法测量多孔物质的孔体积,是人们已熟知的方法,但还没有人将其用于测量液体在毛细孔中的体积、密度等行为。我们尝试了用压汞法,测量具有确定孔径的毛细孔玻璃(CPG),在吸附了不同量水后孔体积的变化,进而计算了不同吸附层的水在CPG中的体积、密度。此外还测定了载有不同量正癸烷后,CPG孔体积的变化。  相似文献   

16.
Five binary water + C4Ej mixtures, water + n-C4E0, water + 2-C4E0, water + iso-C4E0, water + n-C4E1, and water + iso-C4E1, were chosen to perform the surface/interfacial tension measurements over the experimental temperature range from 10 to 85 degrees C at the normal pressure by using a homemade pendent drop/bubble tensiometer. The symbol CiEj is the abbreviation of a nonionic polyoxyethylene alcohol CiH(2i+1)(OCH2CH2)jOH. The wetting behavior of the CiEj-rich phase at the interface separating gas and the aqueous phase is systematically examined according to the wetting coefficient resulting from the experimental data of surface/interfacial tensions measurements. For those systems with a lower critical solution temperature, for example, water + n-C6E2, water + n-C4E1, and water + iso-C4E1, a wetting transition from partial wetting to nonwetting is always observed when the system is brought to close to its lower critical solution temperature. On the other hand, to start with a partial wetting CiEj-rich phase, a wetting transition from partial wetting to complete wetting is always observed when the system is driven to approach its upper critical solution temperature. The effect of hydrophobicity of CiEj on the wetting behavior of the CiEj-rich phase at the interface separating gas and the aqueous phase was carefully investigated by using five sets of mixtures: (1) water + n-C4E0, water + n-C5E0, and water + n-C6E0; (2) water + 2-C4E0 and water + 2-C5E0; (3) water + 2-C4E0 and water + n-C4E0; (4) water + n-C4E1, water + n-C5E1, and water + n-C6E1; (5) water + n-C4E0 and water + n-C4E1. The CiEj-rich phase would tend to drive away from complete wetting (or nonwetting) to partial wetting with an increase in the hydrophobicity of CiEj in the binary water + CiEj system. All the wetting behavior observed in the water + CiEj mixtures is consistent with the prediction of the critical point wetting theory of Cahn.  相似文献   

17.
The water consumption characteristics and water use efficiency (WUE) of poplar (Populus simonii) were investigated under the condition of three different soil water regimes, which were 70%, 55% and 40% of field capacity (FC), respectively. The results showed that water potential, water content, photosynthetic rate, WUE of leaves, and plant growth rate decreased significantly with reduction in soil water content. At the level of adequate and medium soil water content, rapid growth and biomass accumulation in poplar occurred during May and June, whereas this phenomenon occurred only during May under severe soil drought condition. Total water consumption and biomass growth were the greatest under adequate soil water condition, decreased under medium soil drought condition, and lowest under severe soil drought condition. Total WUE was the highest under medium soil water condition and lowest under severe soil condition. Changing patterns of water consumption for daily rate, every 10-day rate, and month rate were quite different under these three soil water regimes. For all these three treatments, the highest monthly water consumption rate occurred during July and June. The highest water consumption over a 10-day period was during in the second 10 days of July, the first 10 days of July, and the last 10 days of June for these three treatments, respectively. The day for the highest water consumption in the medium and severe drought treatments occurred 1 or 2 months earlier than the adequate soil water treatment. The daily time for the greatest water consumption was different throughout the life span of poplar under these soil water levels. According to these results, we concluded that poplar did not have the characteristics of drought-resistance plants, and we do not recommend that this tree species be planted over a wider range of the Loess Plateau in China.  相似文献   

18.
Sum frequency generation (SFG) vibrational spectroscopy was used to study the structure of water at cross-linked PEO film interfaces in the presence of human serum albumin (HSA) protein. Although PEO is charge neutral, the PEO film/water interface exhibited an SFG signal of water similar to that of a highly charged water/silica interface, signifying the presence of ordered water. Ordered water molecules were observed not only at the water/PEO interface, but also within the PEO film. It indicates that the PEO and water form an ordered hydrogen-bonded network extending from the bulk PEO film into liquid water, which can provide an energy barrier for protein adsorption. Upon exposure to the protein solution, the SFG spectra of water at the water/PEO interface remained nearly unperturbed. For comparison, the SFG spectra of water/silica and water/polystyrene interfaces were also studied with and without HSA in the solution. The SFG spectra of the interfacial water were correlated with the amount of protein adsorbed on the surfaces using fluorescence microscopy, which showed that the amount of protein adsorbed on the PEO film was about 10 times less than that on a polystyrene film and 3 times less than that on silica.  相似文献   

19.
New Lennard‐Jones parameters have been developed to describe the interactions between atomistic model of graphene, represented by REBO potential, and five commonly used all‐atom water models, namely SPC, SPC/E, SPC/Fw, SPC/Fd, and TIP3P/Fs by employing particle swarm optimization (PSO) method. These new parameters were optimized to reproduce the macroscopic contact angle of water on a graphene sheet. The calculated line tension was in the order of 10−11 J/m for the droplets of all water models. Our molecular dynamics simulations indicate the preferential orientation of water molecules near graphene–water interface with one O H bond pointing toward the graphene surface. Detailed analysis of simulation trajectories reveals the presence of water molecules with ≤∼1, ∼2, and ∼4 hydrogen bonds at the surface of air–water interface, graphene–water interface, and bulk region of the water droplet, respectively. Presence of water molecules with ≤∼1 and ∼2 hydrogen bonds suggest the existence of water clusters of different sizes at these interfaces. The trends observed in the libration, bending, and stretching bands of the vibrational spectra are closely associated with these structural features of water. The inhomogeneity in hydrogen bond network of water at the air–water and graphene–water interface is manifested by broadening of the peaks in the libration band for water present at these interfaces. The stretching band for the molecules in water droplet shows a blue shift as compared to the pure bulk water, which conjecture the presence of weaker hydrogen bond network in a droplet. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
A characterization of the physical properties of protein hydration water is critical for understanding protein structure and function. Recent small-angle X-ray and neutron scattering data indicate that the density of water on the surface of lysozyme is significantly higher than in bulk water. Here, we provide an interpretation of the scattering results using a molecular dynamics simulation, which allows us to make quantitative predictions about density variations in the first hydration shell. The perturbation relative to bulk water involves statistically significant changes in the average water structure in the first hydration layer. The water density in the first hydration shell is increased by 5% with respect to the bulk. In regions of higher water density, the water dipoles align more parallel to each other and the number of hydrogen bonds per water molecule is higher. Increased water density is found for water molecules interacting with hydrogen and carbon atoms in the backbone or with nonpolar or negatively charged side-chain groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号