首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, 9-(2-(benzyloxy)ethyl)-9H-carbazole (BzOCz) and 1-tosyl-1H-pyrrole (TsP) monomers were chemically synthesized and characterized by Fourier transform infrared reflectance (FTIR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. BzOCz and TsP were electrocoated on glassy carbon electrode (GCE) in various molar fractions (X TsP?=?0.5, 0.83, 0.91, and 0.98) in 0.1?M sodium perchlorate/acetonitrile. The detailed characterization of poly(BzOCz-co-TsP) was studied by cyclic voltammetry, FTIR-attenuated total reflection spectroscopy and electrochemical impedance spectroscopy (EIS). The effects of different molar fractions during the preparation of modified electrodes were studied by EIS technique. The AC impedance technique was used to determine the capacitive behaviors of modified GCE via Nyquist, Bode magnitude, and Bode phase plots. The highest low frequency capacitance value was obtained as C LF?=?23.94?μF?cm?2 for X TsP?=?0.98. Therefore, synthesized copolymer has more capacitive behavior than its homopolymers, such as C LF?=?7.5?μF?cm?2 for poly(BzOCz) and C LF?=?9.44?μF?cm?2 for poly(TsP). In order to interpret the AC impedance spectra, R(Q(RW)) electrical equivalent circuit was employed with linear Kramers–Kronig test. A mechanism for electropolymerization has been proposed for copolymer formation.  相似文献   

2.
Three types of conducting polymers, polyaniline (PANI), poly(N-methylaniline) (PNMA), poly(N-ethylaniline) (PNEA) were electrochemically deposited on pencil graphite electrode (PGE) surfaces characterized as electrode active materials for supercapacitor applications. The obtained films were electrochemically characterized using different electrochemical methods. Redox parameters, electro-active characteristics, and electrostability of the polymer films were investigated via cyclic voltammetry (CV). Doping types of the polymer films were determined by the Mott-Schottky method. Electrochemical capacitance properties of the polymer film coating PGE (PGE/PANI, PGE/PNMA, and PGE/PNEA) were investigated by the CV and potentiostatic electrochemical impedance spectroscopy (EIS) methods in a 0.1 M H2SO4 aqueous solution. Thus, capacitance values of the electrodes were calculated. Results show that PGE/PANI, PGE/PNMA, and PGE/PNEA exhibit maximum specific capacitances of 131.78 F g?1 (≈ 436.50 mF cm?2), 38.00 F g?1 (≈ 130.70 mF cm?2), and 16.50 F g?1 (≈ 57.83 mF cm?2), respectively. Moreover, charge-discharge capacities of the electrodes are reported and the specific power (SP) and specific energy (SE) values of the electrodes as supercapacitor materials were calculated using repeating chronopotentiometry.  相似文献   

3.
研究了杂多酸-钴取代三聚Keggin结构锗钨酸盐([Co(H2O)3(α-GeW11CoO38)3]10-)的电化学性能.实验表明,在玻碳(GC)电极上,锗钨酸盐循环伏安曲线呈现2对可逆的氧化还原峰,峰电位差分别为31 mV和35 mV,各对应于2电子4质子和2电子3质子电极反应,其过程受表面吸附控制.经过电聚合将Ge...  相似文献   

4.
Stable electroactive iron tetra(o-aminophenyl)porphyrin (FeTAPP) films are prepared by electropolymerization from aqueous solution by cycling the electrode potential between −0.4 and 1.0 V vs Ag/AgCl at 0.1 V s−1. The cyclic voltammetric response indicates that polymerization takes place after the oxidation of amino groups, and the films could be produced on glassy carbon (GC) and gold electrodes. The film growth of poly(FeTAPP) was monitored by using cyclic voltammetry and electrochemical quartz crystal microbalance. The cyclic voltammetric features of Fe(III)/Fe(II) redox couple in the film resembles that of surface confined redox species. The electrochemical response of the modified electrode was found to be dependent on the pH of the contacting solution with a negative shift of 57 mV/pH. The electrocatalytic behavior of poly(FeTAPP) film-modified electrode was investigated towards reduction of hydrogen peroxide, molecular oxygen, and chloroacetic acids (mono-, di-, and tri-). The reduction of hydrogen peroxide, molecular oxygen, and dichloroacetic acid occurred at less negative potential on poly(FeTAPP) film compared to bare GC electrode. Particularly, the overpotential of hydrogen peroxide was reduced substantially. The O2 reduction proceeds through direct four-electron reduction mechanism.  相似文献   

5.
《Electroanalysis》2006,18(5):485-492
A novel method for the fabrication of carbon nanotubes/poly(1,2‐diaminobenzene) nanoporous composite based electrode was proposed. By multipulse potentiostatic electropolymerization, the multi‐walled carbon nanotubes (MWNTs) and poly(1,2‐diaminobenzene) were deposited simultaneously on the electrode surface. Compared with the composite prepared by the traditional potentiodynamic method, the composite synthesized by multipulse potentiostatic method has a unique nanoporous structure, exhibits excellent conductivity and better environmental stability. The surface of the resulting electrode was characterized with scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The nanoporous composite film modified glassy carbon electrode was also used successfully for the simultaneously voltammetric determination of trace level of Cd2+ and Cu2+ at first‐time. Under the optimal conditions, the determination limits of 0.25 and 0.33 ppb for Cd2+ and Cu2+ were obtained, respectively. The calibration graphs were linear in the concentration range of 5–100 ppb. The electrode system provides an excellent platform for ultra sensitive electrochemical sensors for chemical and biological sensing.  相似文献   

6.
《Electroanalysis》2006,18(7):703-711
A simple procedure was developed to prepare a glassy carbon electrode modified with carbon nanotubes (CNTs) and thionin. Abrasive immobilization of CNTs on a GC electrode was achieved by gently rubbing the electrode surface on a filter paper supporting carbon nanotubes, then immersing the GC/CNTs‐modified electrode into a thionin solution (electroless deposition) for a short period of time (5–50 s for MWCNTs and 5–120 s for SWCNTs ). Cyclic voltammograms of the resulting modified electrode show stable and a well defined redox couple with surface confined characteristic at wide pH range 2–12. The electrochemical reversibility and stability of modified electrode prepared with incorporation of thionin into CNTs film was compared with usual methods for attachment of thionin to electrode surfaces such as electropolymerization and adsorption on the surface of preanodized electrodes. The formal potential of redox couple (E°′) shifts linearly toward the negative direction with increasing solution pH. The surface coverage of thionin immobilized on CNTs glassy carbon electrode was approximately 1.95×10?10 mol cm?2 and 3.2×10?10 mol cm?2 for MWCNTs and SWCNTs, respectively. The transfer coefficient (α) was calculated to be 0.3 and 0.35 and heterogeneous electron transfer rate constants (Ks) were 65 s?1 and 55 s?1 for MWCNTs/thionin and SWCNTs/thionin‐modified GC electrodes, respectively. The results clearly show a great facilitation of the electron transfer between thionin and CNTs adsorbed on the electrode surface. Excellent electrochemical reversibility of redox couple, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this procedure for modification of electrodes.  相似文献   

7.
Direct electron transfer between active glucose oxidase (GOD) and a gold electrode was obtained when GOD was immobilized in poly(N-methylpyrrole) electrochemically prepared on the gold electrode. When electropolymerization was accomplished at 50 °C, after glucose addition, the cyclic voltammograms showed an increased oxidation peak at ca. ?0.45 V vs. Ag/AgCl. This potential corresponds to the oxidation potential for FADH2. Although the GOD becomes much less selective, a glucose-dependent current response is obtained.  相似文献   

8.
利用模板法在氧化铟锡(ITO)电极表面制备了三维有序多孔结构的金掺杂纳米Ti O2薄膜修饰电极(3DOM GTD/ITO),并在此修饰电极上成功固定小牛胸腺DNA(ct DNA),从而构建了一种新型的DNA生物传感器(DNA/3DOM GTD/ITO),并通过透射电镜(TEM)、扫描电镜(SEM)对修饰电极的表面形貌进行表征。采用电化学交流阻抗(EIS)法研究了ct DNA在3DOM GTD/ITO修饰电极表面的固定情况,结果表明,ct DNA已被成功地固定在3DOM GTD/ITO修饰电极表面。采用循环伏安法、微分脉冲伏安法等电化学方法研究了抗肿瘤药物槲皮素(Qu)在3DOM GTD/ITO修饰电极表面的电化学性质及与ct DNA的相互作用。结果表明,Qu在3DOM GTD/ITO修饰电极表面有1对准可逆的氧化还原峰,其氧化还原反应为2电子和2质子的转移过程。Qu可与固定在修饰电极上的ct DNA发生较强的结合作用,其结合常数(K)为3.61×106L/mol。循环伏安实验、紫外-可见吸收光谱、分子荧光光谱、圆二色性光谱均表明Qu与ct DNA之间的相互作用模式为嵌插作用。Qu与ct DNA的碱基结合具有序列选择性,对Qu与聚(d G-d C)及聚(d A-d T)的结合常数进行计算,得到结合常数比K(d G-d C)/K(d A-d T)=3.5,表明Qu与ct DNA发生嵌插作用时更倾向于结合在GC富集区域。  相似文献   

9.
李云龙  苏招红  陈超  孟越  谢青季 《应用化学》2011,28(9):1046-1051
基于多巴胺(DA)在多壁碳纳米管(MWCNTs)修饰玻璃碳(GC)电极上的电聚合,制得聚多巴胺(PDA)/MWCNTs/GC电极,并对该修饰电极进行了电化学阻抗谱 (EIS)和循环伏安法(CV)表征。 在该修饰电极上,DA呈现良好的电化学行为。在pH=7.4磷酸缓冲溶液中其氧化电流显著高于在裸电极上的响应,且能有效地抑制2.0 mmol/L抗坏血酸(AA)或K4Fe(CN)6的直接电化学响应,表明MWCNTs可增敏信号,且阳离子选择透过性PDA膜可抑制阴离子的电化学干扰。 采用CV实验检测DA,DA氧化的半微分伏安峰高(ipa-sd)与多巴胺浓度在0.08~1.76 μmol/L范围内呈线性关系,在无抗坏血酸和有0.5 mmol/L抗坏血酸共存时的线性回归方程分别为ipa-sd(μA/s1/2)=0.107+0.405c(μmol/L)(r2=0.986)和ipa-sd(μA/s1/2)=0.628+0.649c(μmol/L)(r2=0.992),检测限均为8.0×10-8 mol/L(S/N=3)。 该法用于盐酸多巴胺注射液中多巴胺的快速测定,结果满意。  相似文献   

10.
Poly(o-aminobenzoic acid) (o-ABA) film is deposited on glassy-carbon electrode (GCE) by electropolymerization in pH 7.0 phosphate buffer solution (PBS). Electrochemical behavior of modified electrode is investigated by electrochemical impedance spectroscopy (EIS), different pulse voltammetry (DPV), and cyclic voltammetry (CV). The results indicate that there is a greater resistance during the electron transfer process in poly(o-ABA) film than in bare GCE for the redox of [Fe(CN)6]3−/[Fe(CN)6]4−. Further research indicates that epinephrine (EP) can be strongly absorbed on the surface of the poly(o-ABA) film-modified electrode. The modified electrode shows an excellent electrocatalytical activity on EP oxidation. The EP cathodic peak potential shifts negatively with a slope of −53.5 mV/pH, indicating that equal amounts of proton and electron are involved in the electrode reaction process. In pH 7.0 PBS, the peak current of EP and the concentration has a linear relationship from 0 to 65 μM by amperometric current-time curve. __________ From Elektrokhimiya, Vol. 41, No. 9, 2005, pp. 1059–1065. Original English Text Copyright ? 2005 by Cheng, Jin, Zhang. The text was submitted by the authors in English.  相似文献   

11.
用滴涂法和电化学聚合法制备了聚中性红/纳米二氧化硅修饰电极(PNR/nano-SiO2/GCE),并用循环伏安法和交流阻抗法研究了修饰电极表面的电化学行为。实验表明,该修饰电极对抗坏血酸(AA)表现出良好的电催化氧化性能,探讨了复合修饰电极协同增效作用的机理。用线性扫描伏安法研究了AA浓度与峰电流之间线性关系,在pH2.0的磷酸盐缓冲溶液中,AA氧化峰电流在1.8×10-6~5.0×10-3mol/L浓度范围内呈良好的线性关系,检出限为5.4×10-7mol/L(S/N=3)。该修饰电极制备简单,可用于药品及果蔬食品中抗坏血酸的直接测定。  相似文献   

12.
The electrochemical behavior of high-molecular-weight poly(ferrocenyldimethylsilane) films and poly(ferrocenylmethylphenylsilane) films, which contained about 2.8 × 10−6 mol cm−2 ferrocene sites in eight kinds of aqueous electrolyte solutions, was investigated with cyclic voltammetry (CV). In some aqueous electrolyte solutions, the CV peak currents diminished gradually with an increase in the scanning times, whereas in other aqueous electrolyte solutions, stable and repeated cyclic voltammograms were obtained. The polymer films were poor-solvent-swollen in aqueous electrolyte solutions, and this resulted in a high resistivity of mass transfer and a slow rate of electrode reaction; therefore; quasireversible or irreversible CV processes were obtained. The kinetic parameters of the film-electrode processes, such as the surface transfer coefficient, the apparent diffusion coefficient, and the standard rate constant for electron transfer, for the two films in aqueous LiClO4 solutions were measured, and the electrode process mechanism of the films was examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2245–2253, 2004  相似文献   

13.
The effect of aptamer structure and immobilization platform on the efficiency of thrombin binding and its detection using electrochemical impedance spectroscopy (EIS) characteristics was investigated with aptasensors based on glassy carbon electrodes covered with multiwalled carbon nanotubes (MWNTs). Aptamers with one or two binding sequences GGTTGGTGTGGTTGG specific for thrombin and poly(dA) and poly(dT) tags able to form dimeric products (aptabodies) were used to establish significance of steric and electrostatic factors in aptasensor performance. We have shown that electropolymerization of methylene blue onto MWNTs significantly improved electrochemical characteristics and sensitivity of thrombin detection against bare MWNTs. Charge transfer resistance and capacitance of the surface layer were measured in the presence of redox probe [Fe(CN)6]3?/4?. Aptasensors make it possible to detect thrombin in the concentration range 1 nM–1 µM with the limit of detection of 0.7 nM (monitoring resistance changes) and 0.5 nM (capacitance changes), respectively.  相似文献   

14.
在Tris-NaC1*(pH=7.2)缓冲溶液中,应用循环伏安法,微分脉冲伏安法、旋转圆盘电极实验、交流阻抗法及其数据模拟等技术研究了Cu(phen)2 25(phcn=1.10-邻菲咯啉)与6-巯基嘌呤(6-MP)的相互作用.结果显示.Cu(phen)2 2MP与6-MP无论在扩散控制过程或电化学控制过程都发生了相互作用.Cu(phen)2 2及其与6-MP的作用产物于铂电极上均呈现一对氧化还原峰,但后者呈现的氧化还原峰负移.峰电流减小.交流阻抗结果显示,无论6-MP存在与否,Cu(phen)2 2在交流阻抗谱上均呈现两个清晰的电容弧,但当6-MP存在时,电化学反应电阻和电化学吸脱附电阻均增大.Cu(phen)2 2在不同转速下的阻抗拟合结果显示.随转速增大.电化学反应电阻和电化学吸脱附电阻均减小.双电层电容呈增大趋势,而吸脱附电容呈减小趋势:当6-MP存在时.仍然呈现此变化规律.  相似文献   

15.
In this work, the electrochemical behavior of ferrocene (Fc) was investigated by cyclic voltammetry (CV) in room temperature ionic liquids (RTILs) of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIBF4) on glass carbon (GC), edge plane pyrolytic graphite (EPPG) and multi‐walled carbon nanotube (MWCNTs)‐modified EPPG electrodes, respectively. The results demonstrated that on GC electrode, pairs of well‐defined reversible peaks were observed, while for the electrode of EPPG, the peak potential separation (ΔEp) is obviously larger than the theoretical value of 59 mV, hinting that the electrode of EPPG is distinguished from the commonly used electrode, consistent with the previous proposition that EPPG has many “defects”. To obtain an improved electrochemical response, multi‐walled carbon nanotubes (MWCNTs) were modified on the electrode of EPPG; the increased peak current and promoted peak potential separation not only proved the existence of “defects” in MWCNTs, but also supported that “creating active points” on an electrode is the main contribution of MWCNTs. Initiating the electrochemical research of Fc on the MWCNTs‐modified EPPG electrode in RTILs and verifying the presence of “defects” on both EPPG and MWCNTs using cyclic voltammograms (CVs) of Fc obtained in RTILs of EMIBF4, is the main contribution of this preliminary work.  相似文献   

16.
Wet poly(vinyl chloride) (wPVC) coated glassy carbon (GC) electrode was prepared by casting a DMF solution of poly(vinyl chloride) on glassy carbon and immersing it in methanol, and then in water. The wPVC coated GC (wPVC/GC) electrode showed electrochemical activity in aqueous solution; therefore, it was possible to obtain a wPVC/polypyrolle (PPy) composite by electropolymerization from aqueous solution of pyrolle (Py) into the wPVC matrix on the electrode. PPy segregated in wPVC matrix and the mechanical properties of PPy was improved by forming a composite without changing the electrochemical properties of PPy. The PPy/wPVC ratio can be controlled by controlling the concentration of PVC in DMF solution.  相似文献   

17.
We developed an efficient and convenient electrochemical method to synthesize π-conjugated redox metal-complex linear polymer wires composed of azobenzene-bridged bis(terpyridine)metal (2-M, M = Fe, Ru) units covalently immobilized on glassy carbon (GC). Polymerization proceeds by electrochemical oxidation of bis(4′-(4-anilino)-2,2′:6′,2″-terpyridine)metal (1-M) in a water–acetonitrile–HClO4 solution, affording ultralong wires up to 7400 mers (corresponding to ca. 15 μm). Both 2-Fe and 2-Ru undergo reversible redox reactions, and their redox behaviors indicate remarkably fast redox conduction. Anisotropic hetero-metal-complex polymer wires with Fe and Ru centers are constructed via stepwise electropolymerization. The cyclic voltammograms of two hetero-metal-complex polymer wires, GC/[2-Fe]–[2-Ru] (3) and GC/[2-Ru]–[2-Fe] (4), show irreversible redox reactions with opposite electron transfer characteristics, indicating redox diodelike behavior. In short, the present electrochemical method is useful to synthesize polymer wire arrays and to integrate functional molecules on carbon.  相似文献   

18.
Titanium‐supported nanoscale flaky nickel electrode (nanoNi/Ti) was prepared by a hydrothermal process using hydrazine hydrate as a reduction agent. Its electrocatalytic activity as an electrocatalyst for the electrooxidation of glucose was evaluated in alkaline solutions using cyclic voltammetry (CV), chronoamperometric responses (CA) and electrochemical impedance spectra (EIS). The nanoNi/Ti electrode exhibits significantly high current density of glucose oxidation. A high catalytic rate constant of 1.67×106 cm3 mol?1 s?1 was calculated from amperometric responses on the nanoNi/Ti electrode. Low charge transfer resistances on the nanoNi/Ti in 0.5 M NaOH containing various concentrations of glucose were obtained according to the analysis for EIS. Furthermore, amperometric data show a linear dependence of the current density for glucose oxidation upon glucose concentration in the range of 0.05–0.6 mM with a sensitivity of 7.32 mA cm?2 mM?1. A detection limit of 0.0012 mM (1.2 μM) M glucose was found. Results show that the prepared nanoNi/Ti electrode presents high electrocatalytic activity for glucose oxidation.  相似文献   

19.

Electrochemical polymerization of azure B from sulfuric acid solution was carried out by using cyclic voltammetry. The electrolytic solution consisted of 5.0 mmol · dm?3 azure B and 0.3 mol · dm?3 H2SO4. The temperature for polymerization was controlled at 20°C. A blue film, i.e., poly(azure B) was formed on a platinum foil and had a electrochemical reversibility, stability and a fast charge transfer ability in the 0.5 mol · dm?3 Na2SO4 with pH ≤4.0 solution. The currents of both anodic and cathodic peaks are proportional to υ1/2 at the scan rate (υ) region of 25 and 600 mV · s?1 on the cyclic voltammograms. The conductivity of poly(azure B) is 2.8×10?6 S · cm?1 at 20°C. The UV‐visible spectrum and Raman spectrum of the polymer are different from those of the monomer. A possible polymerization mechanism of azure B was also proposed.  相似文献   

20.
聚阿魏酸修饰电极的电化学特性及电催化性能   总被引:4,自引:0,他引:4  
研究了阿魏酸在玻碳电极表面电聚合成膜的方法和条件,测量了应用电化学方法制备不同厚度的阿魏酸修饰电极的循环伏安行为及其它电化学性质.对厚度为0.5 μm的阿魏酸膜,测得的电子转移系数为0.49,表观电极反应速率常数(ks)为6.56 s-1.扩散系数DR为7.9×108 cm2•s-1,Do为4.48×108 cm2•s-1.该修饰电极对烟酰胺腺嘌呤二核苷酸(NADH)氧化具有很好的催化作用.NADH浓度在0.01~5.0 mmol•dm-3范围内与峰电流呈现良好的线性关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号