首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of the permanganic oxidation process of L ‐norleucine, L ‐leucine, L ‐iso‐leucine, and L ‐tert‐leucine in strong acid medium has been investigated using a spectrophotometric technique. Conclusive evidences have proven autocatalytic activity of Mn(II) for these reactions in strong acid medium analogous to weak acid medium, but in the former, ratio of Mn(II) to amino acid concentration must reach a certain amount for autocatalytic phenomenon to emerge, which we call “critical ratio.” This critical ratio depends on the nature of the amino acid employed. Thus considering “delayed autocatalytic behavior” of Mn(II) ions, rate equations satisfying observations for both catalytic and noncatalytic routes have been presented. Kinetic data in a noncatalytic pathway have been fitted to a biparametric equation including inductive, steric, and hyperconjugation correction effects, and it is determined that by shifting the side branch on a carbon chain toward an α‐carbon atom (adjacent to amino acid's functional group) and also adding branches to the α‐carbon atom, the reaction rate in the noncatalytic pathway decreases. Inductive and steric hindrance factors in amino acid's carbon chain are effective on processes' rate both in catalytic and noncatalytic pathways. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 1–11, 2006  相似文献   

2.
The influence of substitution on the amine functional group of glycine in the permanganic oxidation of such an α‐amino acid in moderately concentrated sulfuric acid medium has been investigated. Reaction products analysis has revealed that contrary to the usual α‐amino acid oxidation product, which is an aldehyde species, a valuable compound, namely 1,4‐dimethylpiperazine‐2,5‐dione, has been obtained as the main product via a cheap, simple, efficient, and novel method. Sarcosine has been chosen as a substituted derivative of glycine, and the kinetics and mechanism of its permanganic oxidation have been investigated using a spectrophotometric technique. Conclusive evidence has proven delayed autocatalytic activity for Mn(II) in this reaction, analogous to some α‐amino acids. It has been revealed that such activity can show up when a certain concentration ratio of Mn(II) to sarcosine is built up in the medium, which we call the “critical ratio.” The magnitude of the latter ratio depends on the sulfuric acid concentration. Considering the “delayed autocatalytic behavior” of Mn(II) ions, rate equations satisfying observations for both catalytic and noncatalytic routes have been presented. The reaction shows first‐order dependence on permanganate ions and sarcosine concentrations in both catalytic and noncatalytic pathways, and apparent first‐order dependence on Mn2+ ions in catalytic pathways. The correspondence of pseudo‐order rate constants of the catalytic and noncatalytic pathways to Arrhenius and Eyring laws has verified “critical ratio” as well as “delayed autocatalytic behavior” concepts. The activation parameters associated with both pathways have been computed and discussed. Mechanisms for both catalytic and noncatalytic routes involving radical intermediates as well as a product having a diketopiperazine skeleton have been reported for the first time. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 689–703, 2009  相似文献   

3.
The kinetics of the permanganic oxidation process of some straight chain amino acids in moderately concentrated sulfuric acid medium have been investigated using a spectrophotometric technique. Conclusive evidences have proven autocatalytic activity of Mn(II) for these reactions. It is determined that even and odd effects of the number carbon atom in a carbon chain are annihilated when it's the number of carbon atoms is increased more than of three in a noncatalytic oxidation pathway. Thus, rate constants belonging to glycine, l ‐α‐amino‐n‐butyric acid, l ‐norleucine, and l ‐α‐amino‐n‐heptanoic acid satisfy Taft's equation involving the induction factor in the noncatalytic pathway, whereas l ‐α‐amino‐n‐heptanoic acid has an odd number of carbon atom in its chain carbon. On the other hand, in the catalytic pathway, rate constants satisfy Taft' equation including inductive and steric factors, when rate constants belonging to amino acids with an even number of carbon atoms are separated from those with an odd number of carbon atoms. The oxidation process of amino acids in the noncatalytic pathway and those with the even number of carbon atoms in the carbon chain in the catalytic pathway speeds up by an increase in the length of chain that is accompanied with an increase in the carbon chain's electron‐donating characteristic. On the other hand, an increase in the length of the carbon chain is accompanied with more steric hindrance, which counteracts its electron‐donating character, thereby decreasing reaction rate in the catalytic pathway. Finally, amino acid–Mn(II) complexes were studied using a density functional theory method. Results obtained show that such a complex is less stable than reactants, namely it is formed in an endothermic reaction. The number and strength of hydrogen bonding belonging to amino acid is more than those of the amino acid–Mn(II) complex. Besides, it has been illustrated that natural bond orbital analysis and molecular orbital calculations satisfy the findings.  相似文献   

4.
Zahedi  M.  Bahrami  H. 《Kinetics and Catalysis》2004,45(3):351-358
The reaction kinetics of the Autocatalytic Oxidation of L-asparagine by permanganate ions has been investigated in moderately strong acid medium using the spectrophotometric technique. In all cases studied, an autocatalytic effect due to Mn2+ ions formed as a reaction product was observed. Both catalytic and noncatalytic processes were determined to be first order with respect to the permanganate ions while a first and a fractional order with respect to the amino acid for noncatalytic and catalytic reactions were obtained, respectively. The overall rate equation for this process may be written asd[MO4 ]/dt= k´1[MnO4 ]+k´2[MnO4 ][Mn+2],where k´1 and k´2 are rate pseudoconstants for noncatalytic and catalytic reactions, respectively. The influence of some factors such as temperature and reactant concentration on the rate constants has been studied, and the activation parameters have been calculated. Reaction mechanisms satisfying observations for both catalytic and noncatalytic routes have been presented.  相似文献   

5.
The promoting effect of vanadium(V, IV) in the reaction of gallic acid oxidation with bromate ions in aqueous solutions was studied, and the dependence of the rates of catalytic and noncatalytic reactions on the concentration of components was found. A catalytic mechanism was proposed based on the experimental results and data of quantum-mechanical calculations. The linear dependence of the rate of the catalytic reaction on the concentration of vanadium(V)/vanadium(IV) was used to determine these ions in solutions by catalytic photometry. The detection limit was 0.01 μg in an aliquot portion of the test solution; the determination error was less than 20%. The conditions were found for stabilizing the properties of paper supports for more than 30 days, since the interaction of filter and chromatographic papers with bromate ions was found. An adsorption- catalytic test method was proposed for the semiquantitative visual determination of vanadium ions in water and aqueous solutions by the color of the pretreated paper strip immersed in the test solution. The detection limit for vanadium ions was 0.1 mg/L. The 100-fold amounts of Ni(II), Mn(II), Cr(III), and Co(II) do not interfere with the determination. The method was tested on river and sea water samples from different sources.  相似文献   

6.
Spectrophotometric method has been used to characterize water‐soluble colloidal manganese dioxide obtained by the redox reaction between sodium thiosulphate and potassium permanganate in neutral aqueous medium which shows a single peak in the visible region with λmax = 425 nm. The kinetics of the oxidation of lactic acid by colloidal manganese dioxide (oxidant) has been investigated spectrophotometrically under pseudo‐first‐order conditions of excess lactic acid. The rate of the noncatalytic reaction pathway was slow which increased with increasing lactic acid concentration. The reaction was first‐order with respect to [oxidant] as well as [lactic acid]. In presence of manganase(II) and fluoride ions, the noncatalytic path disappeared completely while the oxidation rate of autocatalytic path increased and decreased, respectively with increasing [Mn(II)] and [F?]. A mechanistic scheme in conformity with the observed kinetics has been proposed with the rate‐law: © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 359–366 2004  相似文献   

7.
The influence of Mn(II) ions on the rate of the reaction between ozone and model lignin compounds, guaiacol and veratrole, was studied. The catalyst did not influence the rate of the destruction of the aromatic ring and intermediate ozonolysis products, compounds with conjugated double bonds, in acid media but substantially increased the rate of oxidation of saturated carboxylic acids, ketoacids, and aldehydes. Ozone consumption then increased from 2 to 5 moles per mole of the transformed substrate. A mechanism of the catalytic action of Mn(II) in reactions between ozone and the compounds studied was suggested.  相似文献   

8.
The oxidation of L-Phenylalanine by permanganate ion in aqueous phosphate buffers is autocatalized by the inorganic reaction product, which is stabilized in solution by adsorption of phosphate ions on its surface. This product is a soluble form of colloidal manganese dioxide. The rate of the noncatalytic reaction pathway is first-order in both the oxidizing and reducing agent. It is not affected by potassium chloride addition to the solution, but by phosphate addition. The rate increases with the pH of the medium. The autocatalytic pathway is first-order in both permanganate ion and colloidal manganese dioxide, (the permanganate ion according to the Langmuir isotherm). The autocatalytic rate increases with reductant concentration (follows the Langmuir adsorption isotherm). It is not affected by potassium chloride addition to the solution, whereas an increase in the phosphate concentration results in an increase in the rate with the same pH of the medium. Mechanisms consistent with the experimental data are proposed.  相似文献   

9.
Summary The thin-layer chromatographic behavior of 58 metals on an intermediately acidic cation exchanger, cellulose phosphate (P-cellulose), has been surveyed systematically in sulfuric acid and ammonium sulfate media (0.01–2.0 M). The Rf values for many bivalent and univalent metal ions on P-cellulose plates increase with increasing concentration of sulfate ions. Howerver, manganese (II), arsenic (III) and selenium (IV) are not adsorbed on the cellulose to any great extent. Beryllium (II) and other metals, which form either strong phosphate complexes or insoluble sulfate precipitates, are strongly retained on the P-cellulose. The thin-layer chromatographic separations of various metal ions of analytical interest were accomplished to demonstrate the use of Rf measurements for predicting separations in the acid and the sulfate media.  相似文献   

10.
In the past decades, the oxidation of hydrocarbons by transition metal complexes has been studied extensively. The current progress of the research on synthetic quasiporphyrin catalysts has led to the development of several systems that are able to reproduce the hene-enzyme mediated oxygenation and oxidation reactions[1]. In our group[2,51, the mononuclear complexes of amino acid Schiff base have been synthesized and their catalytic oxidation has been studied. In this paper, two dinuclear complexes, such as Salicylidence-β-alanine-Co(II)-Cu(II) and Salicylidence-β-alanine-Co(II)Mn(II), were prepared with amino acid Schiff bases and metal ions. In the presence of these dinuclear complexes, cyclohexene was effectively oxidized under 1 atm of molecular oxygen without any coreductants. The allylic hydroperoxide was obtained as an important product, which suggested a clear allylic pathway of oxidation of cyclohexene.  相似文献   

11.
The reaction kinetics for the oxidation of theophylline by permanganate ions have been investigated in perchloric acid medium using spectrophotometric techniques at 25?°C, and at constant ionic strength 1.60 mol?dm?3, under pseudo first order conditions. An autocatalyzed reaction is observed due to one of the products formed is Mn(II). The orders with respect to theophylline and Mn(VII) were both found to be unity, whereas fractional order is observed with respect to the autocatalyst, Mn(II). The rate of the reaction increases as the concentration of acid increases, but the order with respect to acid concentration is less than unity. The influence of temperature on the rate of reaction was studied. Based on the experimental results a suitable mechanism is proposed. The activation and thermodynamic parameters were determined with respect to slow reaction step.  相似文献   

12.
米常焕  夏熙  张校刚 《物理化学学报》2002,18(11):1038-1042
采用循环伏安法对Mn(Ⅱ)/Mn(Ⅲ)电对在硫酸溶液中铂电极上的氧化还原与Mn(Ⅱ)浓度、酸浓度、扫描速率、温度以及对流因素的函数关系进行了研究.结果发现,Mn(Ⅱ)在铂电极上Mn(Ⅱ)的氧化及Mn(Ⅲ)的还原均受扩散控制;升高温度和磁搅拌均能增加Mn(Ⅱ)氧化为Mn(Ⅲ)的速率;增加酸浓度和Mn(Ⅱ)浓度有利于增加Mn(Ⅲ)的稳定性,减少Mn(Ⅲ)的歧化和水解.  相似文献   

13.
Two new symmetrical acetylacetone-based Schiff bases, herein called LA and LB, have been synthesized. The complexes formed by their association with Mn(II) have been evaluated for catalytic alkene epoxidation with H2O2. The catalytic efficiency of Mn(II)/LA and Mn(II)/LB systems were shown to be switched on by ammonium acetate with remarkable effectiveness and selectivity towards epoxides. EPR spectroscopy for Mn(II)/LA shows that the catalytic centre is a mononuclear Mn complex. Additives that allow easier oxidation of Mn(II) to higher oxidation states, i.e. such as acetate and bicarbonate, can promote decisively the catalytic function. Additives that do not allow oxidation of Mn(II) to higher oxidation states, i.e. such as formate and oxalate, inhibit severely the catalytic function. Monocarboxylate ions, i.e. acetate, bicarbonate and formate do not disturb considerably the first coordination sphere of Mn(II). Dicarboxylate additives, i.e. such as oxalate, form strong complex with the Mn(II).Based on the catalytic and EPR data, a double role is suggested for ammonium acetate. This is to promote Mn(II) oxidation, and to function as a dual acid-base system, participating into the catalytic cycle.  相似文献   

14.
The reaction between ozone and lignin in aqueous solutions catalyzed by Mn(II) ions is studied. The rate of destruction for aromatic structures of lignin is found to increase in the presence of Mn(II) ions. However, the greatest catalytic effect is observed upon the transformation of aliphatic acids that are difficult to oxidize with ozone. The introduction of catalyst raises the total consumption of ozone from 3 to 7 mol per each structural unit of lignin. A scheme is proposed for the transformation of phenol fragments of lignin using ozone with the participation of Mn(II) ions: at the initial stage, we observe the ozone oxidation of lignin and Mn(II) to Mn(III) ions stabilized with products of lignin oxidation and accompanied by the formation of chelate complexes, and the Mn(III) chelate complexes act as low-molecular mediators, attacking phenol structures and initiating radical processes.  相似文献   

15.
Summary Thin-layers of an intermediately acidic cation exchanger, cellulose phosphate (P-cellulose), have systematically been used to study the chromatographic behavior of 58 inorganic ions in both hydrochloric acid and acid ammonium thiocyanate media (0.01–2.0 mol dm−3). In both solvent systems, the R f values of many bivalent cations increase with increasing concentration of the acid and thiocyanate. Polyvalent metal ions including beryllium (II) and the others are strongly retained on the P-cellulose in the acid and thiocyanate systems tested. Palladium(II), mercury(II), ruthenium(III), rhenium(VII), arsenic(III), selenium(IV) and tellurium(IV) are not adsorbed on P-cellulose to any great extent. For silver(I), indium(III), gold(III), and platinum(IV), there are marked differences in the chromatographic behavior between hydrochloric acid and acid ammonium thiocyanate systems. Multicomponent separations conducted on P-cellulose plates with these eluents are presented.  相似文献   

16.
The large scale electrolysis of Zn(II), Cd(II), Hg(II), Cu(II), Ni(II), Co(II), Co(III), Fe(II), Mn(II), Cr(II), Cr(III), Bi(III), In(III) and Sb(III) at mercury electrodes in presence of mercaptoacetic acid, 3-mercaptopropionic acid, cysteine and thiourea was carried out and the products were investigated. In case of transition metal ions the catalytic reduction of organic compounds resulting in the formation of sulphide ions was found. There are two possible ways of the production of these ions: (i) consisting in the formation of a complex between transition metal ion and organic ligand which is subsequently, reduced, and (ii) direct electroreduction of organic compound on the electrode modifiied by the deposition of metal and metal sulphide. For both cases the mechanism of electroreduction was discussed.  相似文献   

17.
Kinetics of oxidation of L-aspartic acid and L-glutamic acid by manganese(III) ions have been studied in aqueous sulphuric acid, acetic acid, and pyrophosphate media. Manganese(III) solutions were prepared by known electrolytic/chemical methods in the three media. The nature of the oxidizing species present in manganese(III) solutions was determined by spectrophotometric and redox potential measurements. The reaction shows a variable order in [manganese(III)]o: the order changes from two to one as the reactive oxidizing species changes from an aquo ionic form to a complex form. There is a first-order dependence of the rate on [amino acid]o in all the three media while the other common features include an inverse dependence each on [H+] and on [manganese(II)]. Effects of varying ionic strength and solvent composition were studied. Added anions such as pyrophosphate, fluoride, or chloride alter the reaction rate and mechanism by changing the formal redox potential of Mn(III)-Mn(II) couple. Activation parameters have been evaluated using the Arrhenius and Eyring plots. Mechanisms consistent with the kinetic data have been proposed and discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
A solid phase extraction method for the determination of Cu(II), Mn(II) and Zn(II) metal ions in natural water and leafy vegetable samples by ICP-AES was developed. The method was based on the sorption of metal ions onto Amberlite XAD-16 functionalized with a new chelating ligand potassium 2-benzoylhydrazinecarbodithioate (Amberlite XAD-16-PBHCD) and elution with nitric acid. The optimum experimental conditions for the quantitative sorption of the three metal ions, namely, effect of pH, sample volume, flow rate, concentration of eluent, sorption capacity, kinetics of sorption, and the effect of diverse ions on the sorption of analytes have been investigated. All the metal ions were quantitatively retained by the functionalized resin at pH 5.0 and sorbed metals could be eluted with 2.0?M HNO3. The detection limits were 5.6, 4.5 and 1.8?µg?L?1 for Cu(II), Mn(II) and Zn(II), respectively. The developed method was applied for the determination of Cu(II), Mn(II) and Zn(II) in water and leafy vegetable samples.  相似文献   

19.
Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes of barbital, thiouracil, adenine, amino acids (methionine, lysine and alanine) and some mixed ligands were prepared and characterized by elemental analyses, IR, electronic spectra, magnetic susceptibility and ESR spectra. Coordination of the metallic centre to the oxygen and nitrogen atoms of barbital, thiouracil, amino acids and coordinate to amino group and nitrogen atom of adenine occurred. Electronic spectra and magnetic susceptibility measurements were utilized to infer the structure of the complexes which are octahedral for Mn(II), Fe(III), Co(II), Ni(II) and Cd(II) and tetrahedral for Mn(II), Cu(II), Zn(II) complexes. ESR spectra were observed for copper complexes with a d(x2)-(y2) ground state with small g(||) values indicating strong interaction between the ligands and their metal ions.  相似文献   

20.
Melts of aromatic carboxylic acids are found to be excellent reaction media for 1-pot high molecular weight polyimide synthesis from diamines and tetracarboxylic acid dianhydrides. No reversible reaction of polyamic acids (PAA) formation was observed. The effect of the reactivity equalization was observed for low- and high reactive diamines in acid media. The intrinsic acid catalysis of the imidization reaction was shown to take place also in polycyclization of PAA in concentrated solutions in amic solvents. It is found that the dependence of relative imidization rate (% conv./min) vs. AA/N-MP ratio for model low molecular and oligomeric amic acids (AA) in N-MP at 140–150°C possesses a sharp maximum near the molar ratio 1:1, the imidization rate at the point of the maximum being an order of magnitude higher than that for diluted solutions. A scheme is proposed which includes the opportunity of two reaction channels to occur: A usual one (I) and a catalytic one (II). In diluted solutions and in solid phase experiments with easy evacuation of volatile products, the role of catalytic channel II is low. To the contrary, in high concentrated solutions or in solid phase experiments under the conditions exluding volatile products evacuation, the catalytic channel becomes the key one. It is proposed that the catalytic reaction proceeds via the common acid catalysis mechanism, the solvent and water playing the role of co-catalysts, probably through the mechanism of ionic dissociation of AA or hydrogen- bound complex AA-solvent. It is shown that the water released in the course of solid phase imidization of phtalamic acid at 140°C under the conditions where vaporization is impossible causes a sharp autocatalytic effect after initial 20%-conversion period to obtain entirely imidizied product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号