首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-cost, yellowish, nanocrystalline nitrogen-doped titanium dioxide (N-doped TiO2) powder was synthesized by a hydrothermal method. The as-prepared N-doped TiO2 powder was characterized by X-ray diffraction, transmission electron microscopy (TEM), UV–Vis absorption spectra, X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller analysis techniques. The grain size of the prepared powder was around 13 nm as estimated by both Scherrer’s method and TEM images. The effect of the ratio of N-doped TiO2 particles to Degussa P25 on the photovoltaic performance of large-area dye-sensitized solar cells (DSSCs) was also investigated. The N-doped TiO2 electrode showed higher photovoltaic performance compared with that of pure P25 at constant irradiation of 100 mW cm?2, which is attributed to the large pore size and high surface area of N-doped TiO2 resulting in the introduction of extra charge carrier pathways that could be beneficial for overall charge transportation. Energy conversion efficiency of 5.12 % was achieved in a DSSC device with active area of 51.19 cm2.  相似文献   

2.
Highly photoactive bi-phase nanocrystalline TiO2 photocatalyst was prepared by a solvent evaporation-induced crystallization (SEIC) method, and calcined at different temperatures. The obtained TiO2 photocatalyst was characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET surface areas. The photocatalytic activity was evaluated by the photocatalytic oxidation of acetone in air. The results show that solvent evaporation can promote the crystallization and phase transformation of TiO2 at 100°C. When calcination temperatures are below 600°C, the prepared TiO2 powders show bimodal pore size distributions in the mesoporous region. At 700°C, the pore size distributions exhibit monomodal distribution of the inter-aggregated pores due to the collapse of the intra-aggregated pores. At 100°C, the obtained TiO2 photocatalyst by this method shows good photocatalytic activity, and at 400°C, its photocatalytic activity exceeds that of Degussa P25. This may be attributed to the fact that the prepared TiO2 photocatalyst has higher specific surface areas, smaller crystallite size and bimodal pore size distribution.  相似文献   

3.
Anatase mesostructured TiO2 nanocrystalline was prepared in a mixture of 1-butyl-3-methyl-imidazolium tetrafluoroborate (BMIM+BF4) ionic liquid and water by a low temperature hydrothermal method. The obtained materials were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and N2 adsorption–desorption. The existence of BMIM+BF4 enhanced the polycondensation and crystallization rate, which encouraged the formation of anatase crystal. The TiO2 particles were thermally very stable and thus resistant to anatase-rutile phase transformation during calcination at high temperatures. The anatase TiO2 showed high photocatalytic activity in the degradation of p-chlorophenol than that of the commercially available TiO2, Degussa P25. After 2 h reaction under the UV-irradiation of 250 W, the removing rate of p-chlorophenol was up to 96.3%.  相似文献   

4.
Develop a photocatalyst system for solar energy conversion to electric energy or chemical energy is a topic of great interest for fundamental and practical importance. In this study, nitrogen-doped TiO2 with high hydrogen production by photocatalytic water splitting were prepared by microwave-assisted hydrothermal method using titanium sulfate as precursor in the presence of urea. The nitrogen doped TiO2 prepared in this study was pure anatase phase with a high surface area (372?m2?g?1) and showed a very high hydrogen evolution rate of water splitting reaction under UV light irradiation (4,386?μmol?g?1?h?1) and visible light irradiation (185?μmol?g?1?h?1) which was about 15?times higher than commercial TiO2 (Degussa P25).  相似文献   

5.
This article describes the preparation of mesoporous rod-like F-N-codoped TiO2 powder photocatalysts with anatase phase via a sol-gel route at the temperature of 373 K, using cetyltrimethyl ammonium bromide (CTAB) as surfactant. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance spectra (UV-vis DRS). The results showed that the photocatalysts possessed a homogeneous pore diameter and a high surface area of 106.3-160.7 m3 g−1. The increasing CTAB reactive concentration extended the visible-light absorption up to 600 nm. The F-N-codoped TiO2 powders exhibited significant higher adsorption capacity for methyl orange (MO) than that of Degussa P25 and showed more than 6 times higher visible-light-induced catalytic degradation for MO than that of P25.  相似文献   

6.
A titanium oxide layer used for a dye-sensitized solar cell (DSSC) has to meet two opponent properties to assure a high efficiency DSSC: good connection between TiO2 grains and a large inner surface area. Three different paste formulations based on commercial nanocrystalline TiO2 powder (Degussa P25) are studied. Results confirm that modification of the TiO2 paste with the Pechini sol–gel method increases the surface area of the TiO2 layer while maintaining good connections between the nanocrystalline grains, consequently the efficiency of the DSSC increases from 1.8% to 5.3%. The structure and morphology of the TiO2 layers are described by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD).  相似文献   

7.
Commercial product Degussa TiO2 P25, sol-gel produced TiO2 and TiO2 modified by carbon nanotubes addition (5% of the TiO2 mass) are tested as photocatalysts for the degradation of endocrine disrupting compound 17α-ethynylestradiol (1 μM aqueous solution). The molecular and crystal structure, phase composition, crystallite size, specific surface area, pore average diameter, their area and volume distribution, morphology, IR and UV/Vis spectra of the catalysts are characterized. HPLC is used for estrogen analysis. The sorption ability and photocatalytic activity (measured by degradation rate constant and percentage of the pollutant conversion) of the catalysts under UV (17 W, emission maximum at 254 nm) irradiation is determined. Full destruction of the pollutant is reached after 30 min irradiation in presence of Degussa P25. The performance of some of the catalysts is compared with literature data for their activity under 365 nm-illumination.   相似文献   

8.
余家国  余济美 《中国化学》2003,21(8):994-997
A novel and efficient methodology for obtaining highly active photocatalyst of bi-phase TiO2 with small particle size and high specific surface area was developed by solvent evaporation-in-duced crystallization (SEIC) method at low temperature. The prepared TiO2 powder was characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET surface areas. The photocatalyfic activity was evaluated by the photocatalyflc oxidation of acetone in air. The results showed that the photocatalytic activity of the TiO2 powder preDared by this method approached that of Degnssa P25. This may be atotributed to the fact that the predated TiO2 powder had larzer specific surface areas (265 m2. g- 1 ) and smaller crystallite size (about 5 nm), but relatively low crystallinity, as compared with Degussa P25.  相似文献   

9.
The photocatalytic activity of gold deposited on Degussa P25 titanium dioxide (Au-DP25) in the photodegradation of methyl orange (MO) was investigated. The as-prepared materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectroscopy (DRS) techniques. The obtained results show that the gold (Au0) deposited TiO2 exhibited visible light plasmon absorption band. The degradation experiment j reveals that the catalytic activity of Au-DP25 in the degradation of MO is higher than that of commercially available Degussa P25 TiO2 (DP25) samples. In addition, the photocatalytic ability of composite Au-DP25 was hardly decreased after a five-cycle for MO degradation. The kinetics of the MO degradation fitted well the Langmuir-Hinshelwood model.  相似文献   

10.
A sample of sulfated anatase TiO2 with high-energy (001) facets (TiO2-001) was prepared by a simple one-step hydrothermal route using SO42– as a morphology-controlling agent. After doping ceria, Ce/TiO2-001 was used as the catalyst for selective catalytic reduction (SCR) of NO with NH3. Compared with Ce/P25 (Degussa P25 TiO2) and Ce/P25-S (sulfated P25) catalysts, Ce/TiO2-001 was more suitable for medium- and high-temperature SCR of NO due to the high surface area, sulfation, and the excellent properties of the active-energy (001) facets. All of these facilitated the generation of abundant acidity, chemisorbed oxygen, and activated NOx-adsorption species, which were the important factors for the SCR reaction.  相似文献   

11.
Nitrogen-modified cobalt-doped TiO2 materials were successfully prepared via a modified sol–gel method. The structure and properties of the catalysts were characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM, ultraviolet–visible light diffuse reflectance spectra (UV–Vis DRS), N2 adsorption–desorption isotherms, and energy-dispersive X-ray spectroscopy. The XRD patterns of the pure and co-doped TiO2 samples indicate that the predominant phase was anatase. The average grain size obtained from TEM was approximately 10 nm. The Brunauer–Emmett–Teller analysis results indicate that the specific surface area was 77.7 m2 g?1. The UV–Vis DRS results for the co-doped sample reveal an absorption edge that had been red-shifted to 500 nm. The photocatalytic activities of the samples were evaluated through photodegradation of papermaking wastewater under UV and visible light irradiation. Compared with the cobalt-doped TiO2 sample and Degussa P25, the 3 mol% N-doped mesoporous N/Co-TiO2 photocatalyst exhibited the highest photocatalytic activity, which can be ascribed to the synergistic effect of the N and Co co-doping.  相似文献   

12.
Sulfur doped ZnO/TiO2 nanocomposite photocatalysts were synthesized by a facile sol‐gel method. The structure and properties of catalysts were characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), UV‐vis diffusive reflectance spectroscopy (DRS) and N2 desorption‐adsorption isotherm. The XRD study showed that TiO2 was anatase phase and there was no obvious difference in crystal composition of various S‐ZnO/TiO2. The XPS study showed that the Zn element exists as ZnO and S atoms form SO2?4. The prepared samples had mesoporosity revealed by N2 desorption‐adsorption isotherm result. The degradation of Rhodamine B dye under visible light irradiation was chosen as probe reaction to evaluate the photocatalytic activity of the ZnO/TiO2 nanocomposite. The commercial TiO2 photocatalyst (Degussa P25) was taken as standard photocatalyst to contrast the prepared different photocatalyst in current work. The improvement of the photocatalytic activity of S‐ZnO/TiO2 composite photocatalyst can be attributed to the suitable energetic positions between ZnO and TiO2, the acidity site caused by sulfur doping and the enlargement of the specific area. S‐3.0ZnO/TiO2 exhibited the highest photocatalytic activity under visible light irradiation after Zn amount was optimized, which was 2.6 times higher than P25.  相似文献   

13.
High surface area mesoporous titanium dioxide (TiO2) particles have been prepared by three different kinds of colloidal aphrons: colloidal gas aphrons, colloidal liquid aphrons, and colloidal emulsion aphrons (CEAs). The precipitate of amorphous TiO2 was prepared by hydrolysis, condensation, and polycondensation reaction of the precursor. The reaction took place under the effect of coulombic repulsion and electrostatic layers of multilayer surfactant molecules. TiO2 particles with various sizes were prepared with different molar ratio of titanium ion to surfactants, which were sodium lauryl sulfate (SDS), cetyltrimetyhlammonium bromide, triblock copolymer Pluronic P123, and triblock copolymer Pluronic F127. The synthesized samples were characterized by X-ray diffraction, Brunauer-Emmett-Teller analysis, N2 adsorption/desorption, and transmission electron microscopy. The mesoporous TiO2 prepared by CEAs method showed a high specific surface area of 224 m2/g with the total pore volume of 0.7751 cm3/g by using SDS as the membrane phase surfactant due to electrostatic attraction favors of anionic surfactant. The solar conversion efficiency of the cell made from TiO2 increases with the combination of increased surface area and total pore volume for higher amount of dye wetting and loading.  相似文献   

14.
TiO2 photocatalytic powders were synthesized by a sol–gel combustion synthesis method in which urea was used as the fuel and titanyl nitrate was used as the oxidizer. Various fuel-to-oxidizer ratios were studied for their effects on the combustion phenomena and the properties of the synthesized TiO2. The fuel-to-oxidizer ratio was found to determine the maximum combustion temperature, which in turn affects the specific surface area, crystallite size, and weight fraction of anatase phase of the synthesized TiO2. The synthesized TiO2 all contain carbonaceous species and are either pure anatase or anatase–rutile mixed phase in crystalline structure. The photocatalytic activity of the TiO2 was found to correlate to a certain degree with the specific surface area, crystallite size, weight fraction of anatase phase, and visible and IR absorbances. The mixed phase TiO2 shows a higher photocatalytic activity than the pure anatase phase TiO2 when containing a small fraction (<~25 wt%) of rutile phase but a lower phoyocatalytic activity when containing a large fraction (>~25 wt%) of rutile phase. The synthesized TiO2 all show higher photocatalytic activity than Degussa P25 TiO2. The enhanced photocatalytic activity was attributed mainly to sensitization by the carbonaceous species and larger amounts of hydroxyl group adsorbed on the TiO2 surface.  相似文献   

15.
Different sol-gel synthesis methods were used to obtain four nanostructured mesoporous TiO2 samples for an efficient photocatalytic degradation of the emerging contaminant N-phenylurea under either simulated solar light (1 Sun) or UV light. Particularly, two TiO2 samples were obtained by means of as many template-assisted syntheses, whereas other two TiO2 samples were obtained by a greener template-free procedure, implying acidic conditions and, then, calcination at either 200 °C or 600 °C. In one case, anatase was obtained, whereas in the other three cases mixed crystalline phases were obtained. The four TiO2 samples were characterized by X-ray powder diffraction (followed by Rietveld analysis); Transmission Electron Microscopy; N2 adsorption/desorption at −196 °C; Diffuse Reflectance UV/Vis spectroscopy and ζ-potential measurements. A commercial TiO2 powder (i. e., Degussa P25) was used for comparison. Differences among the synthesized samples were observed not only in their quantitative phase composition, but also in their nanoparticles morphology (shape and size), specific surface area, pore size distribution and pHIEP (pH at isoelectric point), whereas the samples band-gap did not vary sizably. The samples showed different photocatalytic behavior in terms of N-phenylurea degradation, which are ascribed to their different physico-chemical properties and, especially, to their phase composition, stemming from the different synthesis conditions.  相似文献   

16.
Titania (TiO2) nano-photocatalysts, with different phases, prepared using a modified sol?Cgel process were employed in the degradation of rhodamine at 10?mg?L?1 concentration. The degradation efficiency of these nano-photocatalysts was compared to that of commercial Degussa P25 titania. It was found that the nanocatalysts calcined at 450?°C and the Degussa P25 titania had similar photoreactivity profiles. The commercial Degussa P25 nanocatalysts had an overall high apparent rate constant of (K app) of 0.023?min?1. The other nanocatalyst had the following rate constants: 0.017, 0.0089, 0.003 and 0.0024?min?1 for 450, 500, 550 and 600?°C calcined catalysts, respectively. This could be attributed to the phase of the titania as the anatase phase is highly photoactive than the other phases. Furthermore, characterisation by differential scanning calorimetry showed the transformation of titania from amorphous to anatase and finally to rutile phase. SEM and TEM characterisations were used to study the surface morphology and internal structure of the nanoparticles. BET results show that as the temperature of calcinations was raised, the surface area reduced marginally. X-ray diffraction was used to confirm the different phases of titania. This study has led to a conclusion that the anatase phase of the titania is the most photoactive nanocatalyst. It also had the highest apparent rate constant of 0.017?min?1, which is similar to that of the commercial titania.  相似文献   

17.
《Arabian Journal of Chemistry》2020,13(11):7637-7651
Influence of nitrogen precursors urea, semicarbazide and N,N’-dimethyl urea on the photocatalytic activity of the N-doped TiO2 were studied by a simple decomposition method. The nano N-TiO2 catalysts were synthesized via two different modified approaches by calcination at 500 °C. The synthesized samples were characterized by IR, UV-DRS, Raman, TG-DTA, XRD, EDX, XPS, SEM, TEM and BET analysis. Of the synthesized six samples of N-TiO2 five samples showed better photocatalytic activity towards direct sunlight photo-degradation of methylene blue (MB) and rhodamine B (RhB) than Degussa P25. The catalysts obtained using semicarbazide samples F3 and F4 having large surface area of 76 and 85.8 m2/g displayed maximum photocatalytic activity. The sample F4 was 1.5 times more active than Degussa P25 for the decolourisation of MB and 1.9 times more active for the decolourisation of RhB. The presence of nitrogen, large surface area and coupling of rutile-anatase phases were found to be the main responsible factors for the enhanced photocatalytic activity. The exclusive formation of the anatase phase in the case of urea precursor is attributed to the slow evaporation of urea due to the formation of melamine derived products. The calcination temperature is the deciding factor responsible for the photocatalytic activity of the N-TiO2 samples prepared from precursors which can potentially form the melamine and its oligomerized products on the surface of TiO2.  相似文献   

18.
Nanocrystalline TiO2 was synthesized using the microwave plasma technique and characterized using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, laser particle size analyzer, UV–vis spectroscopy and BET surface area analyzer. The synthesized TiO2 powder crystallized in anatase phase and the crystallite sizes were in nanometers. The photocatalytic activity of the compound was determined and compared against the activity of the commercial Degussa P-25 TiO2 catalyst. The degradation rates of the dyes were found to be higher over the synthesized TiO2 as compared to that over commercial Degussa P-25 TiO2.  相似文献   

19.
Characteristics of 2.45-GHz microwave radiation were examined on two second generation nitrogen-doped TiO2 nanomaterials prepared by annealing Degussa P-25 TiO2 and Ishihara ST-01 TiO2 at 400 °C and 500 °C, respectively, in air in the presence of urea, and for comparison on the undoped pristine samples. Band gaps of all four samples were determined by diffuse reflectance spectroscopy. Both the sizes and the BET specific surface areas of the TiO2 particles were determined, together with dielectric constants and dielectric loss factors. Nitrogen doping caused the size to increase and surface area to decrease. Temperature–time profiles showed that the heating efficiency of the N-doped specimens by the microwaves was greater, particularly significant for the N-doped P25 sample, but rather small for the N-ST01 sample. The effect of microwaves on the surface optical phonons of the samples, with and without UV–vis irradiation, was examined by an in situ Raman spectroscopic technique; for the undoped P-25 and nitrogen-doped N-P25 TiO2 systems the effect was negligible. By contrast, microwave irradiation of Ishihara ST-01 and nitrogen-doped N-ST01 TiO2 samples showed significant changes in the 144-cm?1 optical phonons. Results infer a microwave thermal effect on the Ishihara ST-01 and N-ST01 specimens, whereas for the Degussa P-25 samples the microwaves also imparted a specific effect as the microwaves influenced the N-dopant sites in contrast to the ST-01 systems where the dopant sites were unaffected as evidenced by temperature–time profiles. The microwave-/photo-assisted degradation of 4-chlorophenol under various conditions of UV–vis irradiation and conventional heating, as opposed to microwave heating, confirms the specific microwave effect for the P-25 systems.  相似文献   

20.
P, N, and Mo ternary co-doped nano TiO2 photocatalysts ((P, N, Mo)-TiO2) were prepared by a single step sol–gel method, which show much enhanced photocatalytic activities over Mo-TiO2, (P, N)-TiO2, un-doped TiO2 and Degussa P25 under visible light irradiation. The degradation rate of 0.72Mo–P-TiO2 is as high as 65.3%, which is about 6.7 times of that of Degussa P25. Possible reasons for the improvement of photocatalytic activities were analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号