首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Homogeneous films of metastable Cu3N were deposited on Si-<100> wafers at 90°?C by means of reactive magnetron sputtering ion plating. Under electron bombardment with a focused beam at high current (> 700 nA, 15 keV) these films transform into metallic Cu and N2. The depletion of N was measured quantitatively by EPMA. Structures with a lateral size of 2 μm consisting of metallic copper were written into the Cu3N films. AFM surface scans revealed a vertical growth of the columnar grains of the Cu3N film due to the electron bombardment.  相似文献   

2.
Spherical copper selenide nanoparticles (NPs) were prepared by a simple reaction of sodium selenosulfate with metal copper at room temperature in alkaline Na2SeSO3 aqueous solution. It is a galvanic process that operates on a coupled anodic copper oxidation and selenosulfate reduction. 1-Thioglycerol is found to catalyze this reaction. With gold and graphite as the positive electrodes, nanocrystallites of nonstoichiometric copper selenide (Cu2 − x Se) and stoichiometric copper selenides (CuSe) were produced, respectively. The XRD study shows that the produced CuSe and Cu2 − x Se are in the pure hexagonal phase and clausthalite phase, respectively. Transmission electron microscopy images show that the diameters of the produced CuSe and Cu2 − x Se NPs are in the range of 10∼20 and 5∼15 nm, respectively.  相似文献   

3.
The nature of the oxide films formed on monel-400 and copper in presence of NaOH and N-methylpyrrolidine (a volatile amine) at pH 9.5 and in 0.1 M KNO3 medium were investigated. The oxide films were grown by applying an anodic potential of +0.4 V (vs saturated calomel electrode) for 30 min. The compositions of the surface oxide films were analysed by X-ray photoelectron spectroscopy. In the case of copper in NaOH medium, Cu(0) and a very small amount of copper hydroxide were observed. However, in amine medium, Cu(0) and Cu-amine complex were found. For monel in NaOH, the anodic film was found to contain hydroxides of both copper and nickel. After sputtering, this film showed a small amount of metal oxide below the hydroxide layer as confirmed by the oxygen peak. In amine medium the anodic film was found to contain only nickel hydroxide and metallic copper. The depth profile analysis of films showed that the film developed was very thin and the nickel hydroxide was sputtered very easily from the film. Received: 27 May 1997 / Accepted: 8 September 1997  相似文献   

4.
 YBa2Cu3O 7−x (x = 0.1–0.2) compounds (YBCO) were produced by the oxalate coprecipitation and the solid state reaction methods. The powders obtained were used for the production of YBCO superconducting coatings on Pt/Si wafers, by the electrophoretic deposition technique. The optimum process conditions for the production of both powders and coatings were found by using a combination of modern analytical techniques. The thermal treatment of the samples was followed by thermogravimetry (TG) and differential scanning calorimetry (DSC). The optimization and characterization of the superconducting properties of the powders and coatings were achieved by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), optical microscopy, magnetic susceptibility and electrical resistivity measurements.  相似文献   

5.
Films of BC x N y were produced in a plasma-enhanced chemical vapor deposition process using trimethylborazine as precursor and with H2, He, N2, and NH3, respectively, as auxiliary gas. These films deposited on Si(100) wafers or fused quartz glass substrates were characterized chemically by X-ray photoelectron spectroscopy and by synchrotron radiation-based total-reflection X-ray fluorescence combined with near-edge X-ray absorption fine structure. Independent of the auxiliary gas, the B–N bonds are dominating. Furthermore, B–C and N–C bonds were identified. Oxygen, present in the bulk (in contrast to the surface layer of some nanometers, where molecular oxygen and/or water are absorbed) as an impurity, is bonded to boron or to carbon, respectively. The relation of boron and nitrogen changes with the character of the auxiliary gas: c B/c N ≈ 4:3 (for H2 and He) and c B/c N ≈ 1 (for N2 or NH3). Furthermore, physical properties such as the refractive index and the optical band-gap energy were determined.  相似文献   

6.
Indium tin oxide (ITO) thin films were deposited by mid frequency pulsed dual magnetron sputtering using a metallic alloy target with 10 wt.% tin in an atmosphere of argon and oxygen. The aim of the work was to study the interdependence of structural, electrical and optical properties of ITO films deposited in the reactive and transition target mode, respectively. The deposition rate in the transition mode exceeds the deposition rate in the reactive mode by a factor of six, a maximum value of 100 nm·m min−1 could be achieved. This corresponds to a static deposition rate of 200 nm min−1. The lowest electrical resistivity of 1.1·10−3 Ω cm was measured at samples deposited in the high oxygen flow range in the transition mode. The samples show a good transparency in the visible range corresponding to extinction coefficients being below 10−2. X-ray diffraction was used to characterise crystalline structure as well as film stress. ITO films prepared in the transition mode show a slightly preferred orientation in (211) direction, whereas films deposited in the reactive mode are strongly (222) oriented. Compared to undoped In2O3 all samples have an enlarged lattice. The lattice strain perpendicular to the surface is about 0.8% and 2.0% for films grown in the transition and the reactive mode, respectively. Deposition in the transition mode introduces a biaxial film stress in the range of −300 MPa, while stress in reactive mode samples is −1500 MPa.  相似文献   

7.
Studies on the electrochemical behaviour of Ni1− x Cu x Co2O4 (x ≤ 0.75) and NiCo2− y Cu y O4 (y ≤ 0.30) electrodes in 5 mol dm−3 KOH aqueous solutions are presented. The oxide layers have been prepared by thermal decomposition of aqueous nitrate solutions on nickel supports at 623 K. Powder samples were also prepared by thermal decomposition under the same conditions. The powder samples and the oxide layers were characterised by X-ray powder diffraction. The influence of the copper content on the voltammetric response of the electrodes and activity towards oxygen evolution reaction is analysed and correlated with the surface composition of the electrodes by means of X-ray photoelectron spectroscopy data. The analysis of the results reveals that the presence of Cu affects the electrode behaviour and its influence depends on which cation has been replaced. Received: 22 February 1999 / Accepted: 26 October 1999  相似文献   

8.
Sol–gel processing of Cu-particle-dispersed (K0.5Na0.5)NbO3 (Cu/KNN) thin films was studied in an attempt to develop a method producing piezoelectric composite films with good mechanical performance. The Cu/KNN films were prepared via crystallization annealing at 650–750 °C for 1 min in air, followed by reduction annealing at 400–500 °C for 1–2 h in a 5% H2 and 95% Ar gas mixture. The resultant composite films consisted of perovskite KNN, metallic Cu, and Cu4O3. This suggests that the decomposition of Cu sources takes two different ways in this study. The Cu/KNN composite films containing Cu4O3 phases were produced by the crystallization annealing at 700 °C for 1 min followed by the reduction annealing at 500 °C for 1 h. Surface morphology observations reveal that these films have dense KNN matrix with a grain size of ~200 nm and uniformly dispersed Cu or Cu4O3 particles with a size of <500 nm.  相似文献   

9.
 Solubility measurements as a function of temperature have been shown to be a powerful tool for the determination of thermodynamic properties of sparingly-soluble transition metal carbonates. In contrast to calorimetric methods, such as solution calorimetry or drop calorimetry, the evaluation of solubility data avoids many systematic errors, yielding the enthalpy of solution at 298.15 K with an estimated uncertainty of ±3 kJ · mol−1. A comprehensive set of thermodynamic data for otavite (CdCO3), smithsonite (ZnCO3), hydrozincite (Zn5(OH)6(CO3)2), malachite (Cu2(OH)2CO3), azurite (Cu3(OH)2(CO3)2), and siderite (FeCO3) was derived. Literature values for the standard enthalpy of formation of malachite and azurite were disproved by these solubility experiments, and revised values are recommended. In the case of siderite, data for the standard enthalpy of formation given by various data bases deviate from each other by more than 10 kJ · mol−1 which can be attributed to a discrepancy in the auxiliary data for the Fe2+ ion. A critical evaluation of solubility data from various literature sources results in an optimized value for the standard enthalpy of formation for siderite. The Davies approximation, the specific ion-interaction theory, and the Pitzer concept are used for the extrapolation of the solubility constants to zero ionic strength in order to obtain standard thermodynamic properties valid at infinite dilution, T = 298.15 K, and p = 105 Pa. The application of these electrolyte models to both homogeneous and heterogeneous (solid-solute) equilibria in aqueous solution is reviewed.  相似文献   

10.
 The surface and in-depth compositions of sputter-deposited Cu0.57Ni0.42Mn0.01 thin films were studied by Auger electron depth profiling after thermal treatment. The samples were thermally cycled to maximum temperatures of 300 °C to 550 °C in air, argon and forming gas (N2, 5 vol. % H2). Linear least-squares fit to standard spectra and factor analysis were applied to separate the overlapping Auger transitions of Cu and Ni. Under bombardment by 4 keV argon ions, CuNi(Mn) layers display bombardment-induced surface enrichment of Ni in the same extent as binary CuNi alloys. At sufficiently high oxygen partial pressures, a duplex oxide layer is formed and a thick surface copper oxide overgrows the initial nickel oxide. In reducing atmosphere selective oxidation of manganese takes place. A capping NiCr layer prevents CuNi(Mn) from being oxidized, but the film configuration is degraded with increasing annealing temperature due to formation of a surface chromium oxide and diffusion of Ni from the CuNi(Mn) layer into the NiCr/CuNi(Mn) interface.  相似文献   

11.
Abstract  A 1-D hybrid copper(I) halides, [(phen)Cu3I3] n (phen = 1,10-phenanthroline)(1) with novel D6R (double six-membered rings) Cu6I6 cores, was synthesized by solvothermal reaction and characterized by single-crystal X-ray diffraction. In 1, nitrogen atoms from phen replace two I of CuI4 tetrahedron to give distorted tetrahedral geometries (CuI2N2), then CuI2N2 tetrahedron shares corners via μ3-I to generate an extended 1-D zigzag chain. Two zigzag chains combines with one 1-D (Cu4I4) n chain containing D6R cores via μ3-I-Cu (from cores) bonds to form the infinite 1-D ribbonlike polymer along the a-axis. Furthermore, the title compound is stabilized by conspicuous C–H···I hydrogen bonds, π–π and d10–d10 metallic interactions. Experimental and theoretical optical property investigation indicates that 1 possesses semiconductor property. DFT calculation was executed to probe the electronic structure of 1. To our interest, phen act as a property control species with its π* electrons appear in the forbidden band. Graphical Abstract  A hybrid copper(I) halides [(phen)Cu3I3] n containing D6R cores was structurally determined, which was stabilized by conspicuous C–H···I hydrogen bonds, π–π and d10–d10 metallic interactions and possesses semiconductor property. DFT calculation indicate phen act as a property control species with its π* electrons appear in the forbidden band. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Copper (II) complex of 2,4-dimethyl-1,5,9,12-tetraazacyclopentadeca-1,4-diene, [Me2(15)dieneN4] was synthesized and used in the fabrication of Cu2+ – selective ISE membrane in PVC matrix. The membrane having Cu(II) macrocyclic complex as electroactive material along with sodium tetraphenyl borate (NaTPB) as anion discriminator. Dibutyl phthalate (DBP) as plasticizer in poly(vinyl chloride) (PVC) matrix was prepared for the determination of Cu2+. The best performance was observed by the membrane having Cu(II) complex–PVC–NaTPB–DBP with composition 1:5:1:3. The sensor worked well over a concentration range 1.12 × 10−6 M–1.0 × 10−1 M between pH 2.1–6.2 and a fast response time 10±2 s and a lifetime of 6 months. Their performance in partially non-aqueous medium was found satisfactory. Electrodes exhibited excellent selectivity for Cu2+ ion over other mono-, di-, trivalent cations. It can also be used as indicator electrode in the potentiometric titration of Cu2+ against EDTA as well as in the determination of Cu2+ in real samples.  相似文献   

13.
Summary.  Solubility measurements as a function of temperature have been shown to be a powerful tool for the determination of thermodynamic properties of sparingly-soluble transition metal carbonates. In contrast to calorimetric methods, such as solution calorimetry or drop calorimetry, the evaluation of solubility data avoids many systematic errors, yielding the enthalpy of solution at 298.15 K with an estimated uncertainty of ±3 kJ · mol−1. A comprehensive set of thermodynamic data for otavite (CdCO3), smithsonite (ZnCO3), hydrozincite (Zn5(OH)6(CO3)2), malachite (Cu2(OH)2CO3), azurite (Cu3(OH)2(CO3)2), and siderite (FeCO3) was derived. Literature values for the standard enthalpy of formation of malachite and azurite were disproved by these solubility experiments, and revised values are recommended. In the case of siderite, data for the standard enthalpy of formation given by various data bases deviate from each other by more than 10 kJ · mol−1 which can be attributed to a discrepancy in the auxiliary data for the Fe2+ ion. A critical evaluation of solubility data from various literature sources results in an optimized value for the standard enthalpy of formation for siderite. The Davies approximation, the specific ion-interaction theory, and the Pitzer concept are used for the extrapolation of the solubility constants to zero ionic strength in order to obtain standard thermodynamic properties valid at infinite dilution, T = 298.15 K, and p = 105 Pa. The application of these electrolyte models to both homogeneous and heterogeneous (solid-solute) equilibria in aqueous solution is reviewed. Received June 26, 2001. Accepted July 2, 2001  相似文献   

14.
The action of Na+ incorporation into thin insulating films and transport therein under influence of a bias voltage and temperature (BT stress) is the subject of this work. Deposited onto highly n-doped Si wafers, the insulators get BT stressed and subsequently investigated by means of time-of-flight–secondary ion mass spectrometry (ToF-SIMS). A thin PMMA film, spin-coated onto the insulator, serves as host matrix for a defined amount of Na+, provided via sodium triflate. Combining BT stress and ToF-SIMS depth profiling enables the unambiguous detection of Na+, incorporated into the insulating material. The insulators of interest vary in their nitride content: SiO2, SiOxNy, and Si3N4. For SiO2, it is shown that once a threshold BT stress is exceeded, Na+ gets quantitatively incorporated from PMMA into the underlying insulator, finally accumulating at the SiO2/Si interface. A quantitative assessment by combination of Butler–Volmer kinetics with hopping dynamics reveals activation energies of E a = 1.55 − 2.04 eV for Na+ transport in SiO2 with varying thickness. On the other hand, SiOxNy and Si3N4 films show a different Na+ incorporation characteristic in this type of experiment, which can be explained by the higher coordination of nitrogen and hence the reduced Na+ permeability within these insulators.  相似文献   

15.
《印度化学会志》2023,100(3):100919
For years, the human race has awaited a more convenient, greener, and largely efficient material for energy conversion and electronic applications. Cu2O thin films produced by spray pyrolysis meet the economic viability and cost requirements, and it is widely assumed that they will lead to the production of functionally viable technologies. The spray pyrolysis method was used to added titanium into copper (I) oxide thin films with a deposition temperature of 200 °C and annealing for 2 h at 200 °C in this study. The Ti-doped Cu2O's optical, surface morphology, and photovoltaic characteristics have all been thoroughly explored. The best characteristics were obtained at 3% Ti doped Cu2O. The near-band emission of Ti-doped Cu2O was moved from 385 nm to 400 nm. The bandgap was reduced from 2.35 to 1.98Ev at 3% Ti doped Cu2O. As a result, Cu2O (Ti)-based solar cells' short circuit current density and open circuit voltage were greatly improved. It has been demonstrated that adding Ti to p-CuO/n-Si solar cells enhances their photovoltaic performance.  相似文献   

16.
The thermal treatment of copper films 3–168 nm thick over the temperature range 373–600 K for 1–120 min was shown to result in the formation of copper(I) oxide. Depending on the initial film thickness and temperature, the kinetic curves of the degree of transformation were satisfactorily described by a linear, inverse logarithmic, parabolic, or logarithmic law. Contact potential difference and photo-electromotive force measurements were used to suggest a model including the stages of oxygen adsorption, charge carrier redistribution in the Cu2O-Cu contact field (negative on the side of Cu2O), and copper(I) oxide formation.  相似文献   

17.
Summary.  The inorganic-organic coordination polymer infin; 2[Cu2I2(μ-4-4′-bipyridine)] was prepared by the reaction of Cu(I)I and 4,4-bipyridine in acetonitrile. Its structure consists of staircase-like CuX double chains which are connected to sheets by the 4,4-bipyridine ligands. The thermal decomposition of the corresponding 1:1 copper(I) halide-4,4-bipyridine compounds infin; 2[CuX(μ-4-4′-bipyridine)] (X = Cl, Br, I) was investigated using simultaneous difference thermal analysis and thermogravimetry (DTA-TG), thermomicroscopy, and temperature resolved X-ray powder diffraction in air or argon. Upon heating infin; 2[CuX(μ-4-4′-bipyridine)], several changes in sample mass are observed which correspond to a stepwise loss of the organic ligands. Temperature-resolved X-ray powder diffraction proves that infin; 2[CuX(μ-4-4′-bipyridine)] transforms to infin; 2[Cu2 X 2(μ-4-4′-bipyridine)] during the decomposition; the latter looses the remaining ligands when heated further, forming the corresponding copper(I)halides. When the experiments were performed under an argon atmosphere, the 2:1 coordination polymers were obtained as phase-pure compounds. Received March 1, 2001. Accepted April 11, 2001  相似文献   

18.
 The inorganic-organic coordination polymer infin; 2[Cu2I2(μ-4-4′-bipyridine)] was prepared by the reaction of Cu(I)I and 4,4-bipyridine in acetonitrile. Its structure consists of staircase-like CuX double chains which are connected to sheets by the 4,4-bipyridine ligands. The thermal decomposition of the corresponding 1:1 copper(I) halide-4,4-bipyridine compounds infin; 2[CuX(μ-4-4′-bipyridine)] (X = Cl, Br, I) was investigated using simultaneous difference thermal analysis and thermogravimetry (DTA-TG), thermomicroscopy, and temperature resolved X-ray powder diffraction in air or argon. Upon heating infin; 2[CuX(μ-4-4′-bipyridine)], several changes in sample mass are observed which correspond to a stepwise loss of the organic ligands. Temperature-resolved X-ray powder diffraction proves that infin; 2[CuX(μ-4-4′-bipyridine)] transforms to infin; 2[Cu2 X 2(μ-4-4′-bipyridine)] during the decomposition; the latter looses the remaining ligands when heated further, forming the corresponding copper(I)halides. When the experiments were performed under an argon atmosphere, the 2:1 coordination polymers were obtained as phase-pure compounds.  相似文献   

19.
Conducting polypyrrole (PPy) and poly(pyrrole-2,6-dimethyl-β-cyclodextrin) [poly(Py-β-DMCD)] films were prepared by electrode potential cycling on a gold electrode in aqueous and nonaqueous (acetonitrile) electrolyte solutions containing lithium perchlorate. The resulting products were characterized with cyclic voltammetry, in situ UV–Vis spectroscopy, and in situ conductivity measurements. For the electrosynthesis of poly(Py-β-DMCD), a (1:1) (mole–mole) (Py-β-DMCD) supramolecular cyclodextrin complex of pyrrole previously characterized with proton NMR spectroscopy was used as starting material. A different cyclic voltammetric behavior was observed for pyrrole and the poly(Py-β-DMCD) complex in aqueous and nonaqueous solutions during electrosynthesis. The results show that in both solutions in the presence of cyclodextrin, the oxidation potential of pyrrole monomers increases. However, the difference of oxidation potentials for films prepared in aqueous solution is larger than for the films prepared in nonaqueous solution. In situ conductivity measurements of the films show that films prepared in acetonitrile solution are more conductive than those synthesized in aqueous solutions. Maximum conductivity can be observed for PPy and poly(Py-β-DMCD) films prepared in nonaqueous solution in the range of 0.10 < E Ag/AgCl < 0.90 V and 0.30 < E Ag/AgCl < 0.90 V, respectively. In situ UV–Vis spectroelectrochemical data for both films prepared potentiodynamically by cycling the potentials from −0.40 < E Ag/AgCl < 0.90 V in nonaqueous solutions are reported. This paper is dedicated to Prof. Alan Bond on the occasion of his 65th birthday in recognition of his numerous contributions toward electrochemistry.  相似文献   

20.
BaMoO4 amorphous and crystalline thin films were prepared from polymeric precursors. The BaMoO4 was deposited onto Si wafers by means of the spinning technique. The structure and optical properties of the resulting films were characterized by FTIR reflectance spectra, X-ray diffraction (XRD), atomic force microscopy (AFM) and optical reflectance. The bond Mo-O present in BaMoO4 was confirmed by FTIR reflectance spectra. XRD characterization showed that thin films heat-treated at 600 and 200 °C presented the scheelite-type crystalline phase and amorphous, respectively. AFM analyses showed a considerable variation in surface morphology by comparing samples heat-treated at 200 and 600 °C. The reflectivity spectra showed two bands, positioned at 3.38 and 4.37 eV that were attributed to the excitonic state of Ba2+ and electronic transitions within MoO2−4, respectively. The optical band gaps of BaMoO4 were 3.38 and 2.19 eV, for crystalline (600 °C/2 h) and amorphous (200 °C/8 h) films, respectively. The room-temperature luminescence spectra revealed an intense single-emission band in the visible region. The PL intensity of these materials was increased upon heat-treatment. The excellent optical properties observed for BaMoO4 amorphous thin films suggested that this material is a highly promising candidate for photoluminescent applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号