首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface-coil-type resonators (SCRs) consisting of irradiation and receiver coils that are highly isolated from each other were developed for electron paramagnetic resonance (EPR) measurements. Their sample space was open to free space. For these coils, a circular single-turn one-loop receiver coil and a square single-turn twin-loop irradiation coil were fabricated. The transmission lines were set to resonate at about 700 MHz. A phantom (agar, including a nitroxide radical and physiological saline solution) is located on the receiver coil, and the irradiation coil is under the receiver coil. In this condition, the isolation between the receiver and irradiation SCRs was about 40 dB at the resonant frequency. When radiowaves that were divided from the line to the irradiation SCR were applied to the line from the receiver SCR at the appropriate phase and power to cancel the direct coupling between both SCRs, the isolation increased to more than 70 dB. In the conventional SCR, the noise level increased at high incident power. Because such an increase in the noise was not observed in the irradiation-receiver SCR system, high sensitivity at high incident power was obtained.  相似文献   

2.
It is thought that the design of magnetic field modulation coils is one of the factors limiting enlargement of the sample size in electron paramagnetic resonance (EPR) measurements. In this study, we miniaturized the magnetic field modulation coil and combined it with a surface-coil-type resonator (SCR). The inductor of the SCR was a circular single-turn one-loop coil (diameter, 1 mm), and the magnetic field modulation coil was a twin-loop coil consisting of two solenoid coils each made of 15 turns of copper wire on a cylindrical bobbin with an axial length of 3 mm and an elliptical cross section (major axis, 7 mm; minor axis, 3 mm). The former was located on the latter via a spacer (thickness, 3 mm) in such a way that the directions of their axes coincided. Their combined size was about 10 mm wide, 10 mm deep, and 6 mm high. The transmission lines of the SCR were set on resonance at about 700 MHz. EPR measurements of a phantom (comprising agar that included a nitroxide radical and physiological saline solution), made with a miniaturized modulation coil combined with the SCR, exhibited a sensitivity similar to that for the conventional method. Authors' address: Hidekatsu Yokoyama, Department of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara 324-8501, Japan  相似文献   

3.
Direct irradiation of a sample using a quartz oscillator operating at 250 MHz was performed for EPR measurements. Because a quartz oscillator is a frequency fixed oscillator, the operating frequency of an EPR resonator (loop-gap type) was tuned to that of the quartz oscillator by using a single-turn coil with a varactor diode attached (frequency shift coil). Because the frequency shift coil was mobile, the distance between the EPR resonator and the coil could be changed. Coarse control of the resonant frequency was achieved by changing this distance mechanically, while fine frequency control was implemented by changing the capacitance of the varactor electrically. In this condition, EPR measurements of a phantom (comprised of agar with a nitroxide radical and physiological saline solution) were made. To compare the presented method with a conventional method, the EPR measurements were also done by using a synthesizer at the same EPR frequency. In the conventional method, the noise level increased at high irradiation power. Because such an increase in the noise was not observed in the presented method, high sensitivity was obtained at high irradiation power.  相似文献   

4.
The absolute concentrations of a nitroxide radical in samples in a loop-gap resonator (LGR) were determined by using a radio-frequency (about 720 MHz) electron paramagnetic resonance (EPR) imaging system. EPR imaging of phantoms containing a nitroxide radical, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidin-1-yloxy (carbamoyl-PROXYL), dissolved in various concentrations of an aqueous sodium chloride solution was made to investigate the influence of dielectric losses and sample position within the LGR. As it was found that these influences on the signal intensity were sufficiently small (less than 6%), it is possible to use identical radical solutions in which the radical is dissolved in a known concentration as an internal marker. Two phantoms containing aqueous solutions of 3 mM (as a marker) and 1, 2, 3, 4, or 5 mM (as a sample) carbamoyl-PROXYL were placed together in the LGR. From EPR images of these phantoms, the absolute concentration of the sample could be calculated by using the gray-scale value (i.e., the signal intensity) of the marker and sample within a small margin of error (about 4%).  相似文献   

5.
Coarse control and fine control of the resonant frequency of a loop-gap resonator (LGR) operating at an electron paramagnetic resonance (EPR) frequency of ca. 650 MHz were achieved using a single-turn coil with a varactor diode attached (a frequency shift coil). When the distance between the LGR and the frequency shift coil was changed from 15 to 10 mm under the condition of constant voltage to the varactor diode (0 V), a shift of the resonant frequency of the LGR of ca. 20 MHz was observed (coarse frequency control). When the voltage applied to the varactor diode was changed from 0 to 15 V at the same distance between the LGR and the frequency shift coil (10 mm), a shift of the resonant frequency of the LGR of ca. 200 kHz was observed (fine frequency control). There were no significant changes in sensitivity of EPR measurements of a phantom (comprised of agar with a nitroxide radical and physiological saline solution) without and with the frequency shift coil. The EPR sensitivity did not change discernibly when the resonant frequency was shifted by the frequency shift coil. Furthermore, radio-frequency phase adjustment for homodyne detection could be performed by using the frequency shift coil without applying frequency modulation to the carrier wave.  相似文献   

6.
The kinetics of a nitroxide radical in the renal parenchyma and pelvis in rats were investigated by employing an in vivo EPR imaging system equipped with a surface-coil-type resonator (SCR). The exposed kidney of a living rat was inserted into the single-turn coil of the SCR, with the renal major axis aligned with the direction of alternative magnetic field (B(1)). After the injection of nitroxide radical via the tail vein, EPR measurements were repeated. From the temporal EPR images of the kidney on the 2-D projection to the plane which is perpendicular to the direction of B(1,) the decay rate of nitroxide radical in the renal parenchyma and pelvis was estimated. The parenchymal decay rate was found to be significantly shorter than that for the pelvis.  相似文献   

7.
齐钊  乔明  何逸涛  张波 《中国物理 B》2017,26(7):77304-077304
A novel silicon controlled rectifier(SCR) with high holding voltage(Vh) for electrostatic discharge(ESD) protection is proposed and investigated in this paper. The proposed SCR obtains high Vhby adding a long N+ layer(LN+) and a long P+ layer(LP+), which divide the conventional low voltage trigger silicon controlled rectifier(LVTSCR) into two SCRs(SCR1: P+/Nwell/Pwell/N+ and SCR2: P+/LN+/LP+/N+) with a shared emitter. Under the low ESD current(IESD), the two SCRs are turned on at the same time to induce the first snapback with high V_h(V_(h1)). As the IESDincreases, the SCR2 will be turned off because of its low current gain. Therefore, the IESDwill flow through the longer SCR1 path, bypassing SCR2, which induces the second snapback with high V_h(V_(h2)). The anti-latch-up ability of the proposed SCR for ESD protection is proved by a dynamic TLP-like(Transmission Line Pulse-like) simulation. An optimized V_(h2) of 7.4 V with a maximum failure current(I_(t2)) of 14.7 m A/μm is obtained by the simulation.  相似文献   

8.
We obtained a magnetic resonance image of 1 microm resolution and 75 microm(3) voxel volume for a phantom filled with hydrocarbon oil within an hour at 14.1 T. For this work, a specially designed probe with a high sensitivity RF coil and gradient coils generating over 1000 G/cm was built. The optimal pulse sequence was analyzed in consideration of the bandwidth, diffusion coefficients, and T(1) and T(2) relaxations of the medium. The system was applied to the in vivo imaging of a geranium leaf stem to get the images of 2 microm resolution and 200 microm(3) voxel volume.  相似文献   

9.
An actively detunable planar quadrature surface coil for human body imaging at 4 T has been constructed and compared with a conventional linear surface coil. The coil could be used as a transmit/receive or a receive-only device in combination with a volume transmit coil. Transmission, reception profiles and the corresponding images acquired with each coil, as well as with both individual modes of the quadrature coil, are presented. Data collected using a tissue equivalent loaded phantom recorded with the linear surface coil demonstrated significant intensity distortions due to RF penetration artifact. The quadrature surface coil, on the other hand, provided compensation of the artifact, separately in its transmission and reception profiles as well as in the resultant images. Substantial sensitivity gain was also observed for the quadrature coil compared to the linear device. Significant advantages of using the quadrature surface coil over the linear device at 4 T have, therefore, been demonstrated.  相似文献   

10.
An EPR and ENDOR probehead with a loop-gap resonator for X-band is described. The novel feature of the construction is that an iris-type coupling of the resonator is used instead of the conventional antenna coupling. The ENDOR coil combines the role of creating the radio frequency field and that of a shield for the microwave loop-gap structure. Hence, in order to accommodate the iris and waveguide, a pair of RF coils is used in conjunction with a reduced waveguide with dielectric filling. This arrangement simplifies matching the resonator to the microwave bridge, and standard EPR cryostats can be used making sample manipulation more convenient.  相似文献   

11.
Blood-brain-barrier (BBB)-permeable, 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-yloxy (MC-PROXYL) and BBB-impermeable carbamoyl-PROXYL were used to assess the ESR imaging technique by comparing with autoradiography. For this purpose, spin probes, 14C-labeled at their five-membered ring, [14C]MC-PROXYL and [14C]carbamoyl-PROXYL, were newly synthesized. These probes were i.p. or i.v. injected into rats and autoradiograms were recorded. The autoradiograms of rat head showed that [14C]MC-PROXYL distributed well in the brain compared to [14C]carbamoyl-PROXYL. In vivo ESR spectra and two-dimensional ESR images of isolated rat brain treated with MC- or carbamoyl-PROXYL also indicated the extensive distribution of MC-PROXYL but not carbamoyl-PROXYL in the rat brain. The three-dimensional ESR images of the head of rats and mice were consistent with the fact that MC-PROXYL but not carbamoyl-PROXYL is incorporated into the brain. The ESR-CT images were better for mice than rats. However, the quality of the ESR-CT images was still not satisfactory. Although the resolution and sensitivity of the ESR-CT images were worse than those of the autoradiographic images, the former technique has unique features and advantages; e.g., functional, noninvasive and three-dimensional detection.  相似文献   

12.
Although it is thought that perfluoro-2,4-dimethyl-3-isopropyl-3-pentyl (PFR-2) is a candidate for electron paramagnetic resonance (EPR) imaging agents because of its high stability, no study has been made yet on the EPR imaging of PFR-2. In this study, EPR imaging of a phantom including PFR-2 and mice that had received PFR-2 was performed by an in vivo EPR imaging system operating at an EPR frequency of 700 MHz equipped with a bridged loop-gap resonator (inner diameter, 41 mm; axial length, 10 mm). Because PFR-2 is insoluble in water, it was dissolved in perfluorocarbon. The PFR-2 solution was put in cylindrical sample tubes with various inner diameters, and these sample tubes were placed together in a larger cylindrical sample tube filled with a physiological saline solution, which was used as a phantom. The spatial resolution was estimated to be about 3 mm on the basis of EPR imaging of the phantom. EPR images of mice that had received a PFR-2 injection via the intraperitoneal route indicated that PFR-2 remained in the peritoneal cavity even 2 days after the injection. This finding suggests that it is possible to perform EPR imaging of experimental animals using PFR-2 as an imaging agent which persists in a biological system. Authors' address: Hidekatsu Yokoyama, National Institute of Advanced Industrial Science and Technology, 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, Aichi 463-8560, Japan  相似文献   

13.
Two LC resonant circuits resonating at the same frequency (245 MHz) faced each other with reverse polarity (twin electron paramagnetic resonance (EPR) resonator). For the inductor of the LC circuit, a square single-turn one-loop coil (width, 38 mm) was fabricated. Each LC circuit was independently tuned using mechanical variable capacitors. A cylindrical phantom (diameter, 25 mm) including a 1 mM nitroxide radical physiological saline solution was located at the center of two coils (distance between these coils, 50 mm). Two resonant frequencies (the lower and the higher ones) were observed at each LC circuit of the twin EPR resonator with termination of the other LC circuit. The lower resonant frequency alone was observed when the powers from two LC circuits of the twin EPR resonator were combined by a 180° combiner. On the other hand, the higher frequency alone was observed when they were combined by a 0° combiner. EPR signals could be obtained using the 180° combiner (lower frequency) but not the 0° combiner (higher frequency).  相似文献   

14.
Three kinds of surface-coil-type resonators (SCRs) operating at 720 MHz were fabricated for in vivo temporal electron spin resonance (ESR) measurements. The inner diameter of the singleturn coil of the SCRs was 3, 4, or 10 mm. ResonatorQ increases and the detection limit decreases with coil diameter. The distance across which the microwave magnetic field can penetrate in the direction facing to the coil was about the same (about 2 mm) for all SCRs. In vivo kinetic studies of intravenously injected 4-hydroxy-2,2,6,6-tetramethylpiperidin-l-oxyl (TEMPOL) were performed at the liver, kidney, stomach, rectum, vein, and skin of rats with SCRs suited to the target areas. The halflife of TEMPOL was estimated from the exponential decay of the ESR signal intensity (the peak-to-peak height). Different sites in the rat showed apparent differences in the half-life of TEMPOL. This suggests that the apparent differences in the reducing ability of TEMPOL are related to the organ or tissue where measurement is taken because no excretion of TEMPOL was observed.  相似文献   

15.
The purpose of this study was to analyse the relationship between the radio frequency (RF) coil performance and conductor surface shape for ultra-high field (UHF) magnetic resonance imaging. Twelve different leg-shaped quadrature birdcage coils were modeled and built, e.g., 4 mm-width-leg conventional birdcage coil, 7 mm-width-leg conventional birdcage, 10 mm-width-leg conventional birdcage coil, 13 mm-width-leg conventional birdcage coil, inside arc-shape-leg birdcage coil, outward arc-shape-leg birdcage coil, inside right angle-shape-leg birdcage coil, outward right angle-shape-leg birdcage coil, vertical 4 mm-width-leg vertical birdcage, 6 mm-width-leg vertical birdcage, 8 mm-width-leg vertical birdcage and 10 mm-width-leg vertical birdcage. Studies were carried out in both electromagnetic simulations with finite element method as well as in vitro saline phantom experiments at 9.4 T. Both the results of simulation and experiment showed that conventional birdcage coil produces the highest signal-to-noise ratio (SNR) while the vertical birdcage coil produces the most homogeneous RF magnetic (B 1) field at UHF. For conventional birdcage coils, as well as the vertical birdcage coils, only the proper width of legs results in the best performance (e.g., B 1 homogeneous and SNR). For vertical birdcage coils, the wider the leg size, the higher RF magnetic (B 1) field intensity distribution.  相似文献   

16.
Magnetic Resonance Imaging (MRI) uses non-ionizing radiations and is safer as compared to CT and X-ray imaging. MRI is broadly used around the globe for medical diagnostics. One main limitation of MRI is its long data acquisition time. Parallel MRI (pMRI) was introduced in late 1990's to reduce the MRI data acquisition time. In pMRI, data is acquired by under-sampling the Phase Encoding (PE) steps which introduces aliasing artefacts in the MR images. SENSitivity Encoding (SENSE) is a pMRI based method that reconstructs fully sampled MR image from the acquired under-sampled data using the sensitivity information of receiver coils. In SENSE, precise estimation of the receiver coil sensitivity maps is vital to obtain good quality images. Eigen-value method (a recently proposed method in literature for the estimation of receiver coil sensitivity information) does not require a pre-scan image unlike other conventional methods of sensitivity estimation. However, Eigen-value method is computationally intensive and takes a significant amount of time to estimate the receiver coil sensitivity maps. This work proposes a parallel framework for Eigen-value method of receiver coil sensitivity estimation that exploits its inherent parallelism using Graphics Processing Units (GPUs). We evaluated the performance of the proposed algorithm on in-vivo and simulated MRI datasets (i.e. human head and simulated phantom datasets) with Peak Signal-to-Noise Ratio (PSNR) and Artefact Power (AP) as evaluation metrics. The results show that the proposed GPU implementation reduces the execution time of Eigen-value method of receiver coil sensitivity estimation (providing up to 30 times speed up in our experiments) without degrading the quality of the reconstructed image.  相似文献   

17.
Dielectric losses in the patient may impair radiofrequency receiver coil sensitivity, and transmitter coil efficiency, in nuclear magnetic resonance (NMR) imagers. The frequency dependence of this loss mechanism is derived. Patient losses in a solenoidal head coil used for imaging heads were simulated by a cylindrical saline phantom. The frequency dependence of the loss introduced by the phantom can indicate whether dielectric losses in the patient will be significant compared to eddy current losses. The detuning caused by the phantom is used to calculate an upper limit for the distributed stray capacitance between coil and patient. Given the approximate conductivity of the patient, an upper limit for the dielectric loss can be estimated. Some methods of reducing patient dielectric losses are suggested.  相似文献   

18.
For whole body EPR imaging of small animals, typically low frequencies of 250-750 MHz have been used due to the microwave losses at higher frequencies and the challenges in designing suitable resonators to accommodate these large lossy samples. However, low microwave frequency limits the obtainable sensitivity. L-band frequencies can provide higher sensitivity, and have been commonly used for localized in vivo EPR spectroscopy. Therefore, it would be highly desirable to develop an L-band microwave resonator suitable for in vivo whole body EPR imaging of small animals such as living mice. A 1.2 GHz 16-gap resonator with inner diameter of 42 mm and 48 mm length was designed and constructed for whole body EPR imaging of small animals. The resonator has good field homogeneity and stability to animal-induced motional noise. Resonator stability was achieved with electrical and mechanical design utilizing a fixed position double coupling loop of novel geometry, thus minimizing the number of moving parts. Using this resonator, high quality EPR images of lossy phantoms and living mice were obtained. This design provides good sensitivity, ease of sample access, excellent stability and uniform B(1) field homogeneity for in vivo whole body EPR imaging of mice at 1.2 GHz.  相似文献   

19.
To establish the usefulness of ESR-CT imaging with 3-carbamoyl-2,2,5, 5-tetramethylpyrrolidine-1-oxyl (carbamoyl-PROXYL) in living animals, we investigated the tissue distribution of carbamoyl-PROXYL after i. v. injection. Ten minutes after injection of carbamoyl-PROXYL, its concentrations in the liver, spleen, kidney, and plasma were higher than those in the small intestine and stomach. However, the inter-organ differences in concentrations were not striking. We selected the liver as a representative organ and attempted to measure the concentration of carbamoyl-PROXYL in it after washing out all of the blood by in situ perfusion with saline. The ESR spectrum of the liver homogenate after complete blood washout revealed that the concentration of carbamoyl-PROXYL was significantly reduced. Thus, at this time, carbamoyl-PROXYL was distributed predominantly in the plasma and/or loosely attached to the surfaces of cells. We obtained high-quality ESR-CT images of the murine abdomen at a measurement time of 40 s and found that a high-intensity area of carbamoyl-PROXYL appeared in the liver and kidneys, indicating an abundant blood circulation. Although the organ specificity of carbamoyl-PROXYL was weak, we consider that ESR-CT imaging with carbamoyl-PROXYL will be a powerful new tool for non-invasive anatomic analysis of the liver and the kidneys.  相似文献   

20.
We consider a method of detecting the ionizing component of solar cosmic rays (SCRs) with energy from tens of MeV to tens of GeV by measuring the energy loss of SCR protons and light nuclei in scintillators and the multiplicity of the local neutron generation in a converter. Scintillation detectors based on stilbene, lithium glass, and solid-state photomultiplier tubes are capable of detecting fast neutrons with a temporal resolution of 10 ns and rejecting the gamma-ray background in the measuring system. The method will allow investigating the nucleon components of primary SCRs in circumterrestrial space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号