首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The geometric structure of trifluoroacetic anhydride, CF3C(O)OC(O)CF3, has been studied by gas electron diffraction (GED) and quantum chemical calculations (MP2 and B3LYP with 6-31G* basis sets). The GED analysis results in a single conformer with synperiplanar orientation of the two CO bonds. This analysis, however, cannot discriminate between a planar equilibrium structure (C2v symmetry) with large amplitude torsional motions around the OC bonds and a nonplanar equilibrium structure (C2 symmetry) with a low barrier at the planar arrangement. An effective dihedral angle φ(COCO=18(4)° is obtained. Both quantum chemical methods predict a nonplanar equilibrium structure of C2 symmetry and φ(COCO)=16.5° and 13.9°, respectively.  相似文献   

2.
Three isomers of C60(CF3)16 and one isomer of C60(CF3)18 have been isolated by HPLC from a mixture prepared by trifluoromethylation of C60 with CF3I in a glass ampoule at 380-400 °C. The molecular structures of the four new compounds have been determined by means of X-ray single crystal diffraction and discussed in terms of mechanistic pathways of their formation and relative stability according to the DFT calculations.  相似文献   

3.
A novel isomer of C70(CF3)6 has been isolated by HPLC from a mixture prepared by trifluoromethylation of C70 with CF3COOAg. The X-ray structure revealed an unprecedented arrangement of CF3 groups forming a p3mp ribbon. This result provides additional evidence of the preferable formation of trifluoromethylated fullerene molecules comprising a single continuous ribbon of edge-sharing para- and meta-C6(CF3)2 hexagons.  相似文献   

4.
The XeOSeF5+ cation has been synthesized for the first time and characterized in solution by 19F, 77Se and 129Xe NMR spectroscopy and in the solid state by X-ray crystallography and Raman spectroscopy with AsF6 as its counter anion. The X-ray crystal structures of the tellurium analogue and of the Xe(OChF5)2 derivatives have also been determined: [XeOChF5][AsF6] crystallize in tetragonal systems, P4/n, a=6.1356(1) Å, c=13.8232(2) Å, V=520.383(14) Å3, Z=2 and R1=0.0453 at −60°C (Te) and a=6.1195(7) Å, c=13.0315(2) Å, V=488.01(8) Å3, Z=2 and R1=0.0730 at −113°C (Se); Xe(OTeF5)2 crystallizes in a monoclinic system, P21/c, a=10.289(2) Å, b=9.605(2) Å, c=10.478(2) Å, β=106.599(4)°, V=992.3(3) Å3, Z=4 and R1=0.0680 at −127°C; Xe(OSeF5)2 crystallizes in a triclinic system, , a=8.3859(6) Å, c=12.0355(13) Å, V=732.98(11) Å3, Z=3 and R1=0.0504 at −45°C. The energy minimized geometries and vibrational frequencies of the XeOChF5+ cations and Xe(OChF5)2 were calculated using density functional theory, allowing for definitive assignments of their experimental vibrational spectra.  相似文献   

5.
The infrared spectrum of sulfamoil chloride in the liquid phase was reinvestigated; the infrared and Raman spectra of the solid phase have also been obtained. A complete assignment of the observed bands is proposed. A subsequent normal coordinate analysis was performed. The experimental data are compared to results of ab initio and DFT (density functional theory) calculations. According to the experimental and theoretical results the main conformer of ClSO2NH2 possesses an anti conformation (Cs symmetry, S---Cl single bond in anti position with respect to the nitrogen lone pair).  相似文献   

6.
Trichloromethyl trifluoromethanesulphonate, CF3SO2OCCl3, was prepared by quantitative reaction between Ag(CF3SO2O) and BrCCl3. The conformational and structural properties of the gaseous molecule were studied by vibrational spectroscopy (IR (gas, liquid), Raman (liquid) and quantum chemical calculations (DFT and ab initio methods)).Theoretical and experimental vibrational results evidenced the presence of a single conformer with C1 symmetry. This result is in agreement with the adopted geometry of covalent sulphonates. The conformational preference was studied using the total energy scheme and natural bond orbital partition scheme. Additionally, the total potential-energy has been deconvoluted using six fold decomposition in terms of a Fourier-type expansion.  相似文献   

7.
The geometric structure of dimethyl malonate, CH3OC(O)-CH2-C(O)OCH3, was studied by gas electron diffraction (GED) and quantum chemical methods. We conclude that only diketo conformers exist in the gas phase. According to the GED refinement, a mixture of two diketo conformers is present: 69(10)% (ac,ac) conformer with C2 symmetry (both CO bonds anticlinal relative to the opposite C-C bond) and 31(10)% (sp,ac) conformer with C1 symmetry (one CO bond with synperiplanar, the other CO bond with anticlinal orientation). Ab initio calculations, however, predict a preference of the (sp,ac) conformer rather than the (ac,ac) form.  相似文献   

8.
The density functional theory calculations were used to study the influence of the substituent at P on the oxidative addition of PhBr to Pd(PX3)2 and Pd(X2PCH2CH2PX2) where X = Me, H, Cl. It was shown that the Cipso-Br activation energy by Pd(PX3)2 correlates well with the rigidity of the X3P-Pd-PX3 angle and increases via the trend X = Cl < H < Me. The more rigid the X3P-Pd-PX3 angle is, the higher the oxidative addition barrier is. The exothermicity of this reaction also increases via the same sequence X = Cl < H < Me. The trend in the exothermicity is a result of the Pd(II)-PX3 bond strength increasing faster than the Pd(0)-PX3 bond strength upon going from X = Cl to Me. Contrary to the trend in the barrier to the oxidative addition of PhBr to Pd(PX3)2, the Cipso-Br activation energy by Pd(X2PCH2CH2PX2) decreases in the following order X = Cl > H > Me. This trend correlates well with the filled dπ orbital energy of the metal center. For a given X, the oxidative addition reaction energy was found to be more exothermic for the case of X2PCH2CH2PX2 than for the case of PX3. This effect is especially more important for the strong electron donating phosphine ligands (X = Me) than for the weak electron donating phosphine ligands (X = Cl).  相似文献   

9.
The influence of group 15 various substituents and effect of metal centers on metal-borane interactions and structural isomers of transition metal-borane complexes W(CO)5(BH3 · AH3) and M(CO)5(BH3 · PH3) (A = N, P, As, and Sb; M = Cr, Mo, and W), were investigated by pure density functional theory at BP86 level. The following results were observed: (a) the ground state is monodentate, η1, with C1 point group; (b) in all complexes, the η1 isomer with CS symmetry on potential energy surface is the transition state for oscillating borane; (c) the η2 isomer is the transition state for the hydrogens interchange mechanism; (d) in W(CO)5(BH3 · AH3), the degree of pyramidalization at boron, interaction energy as well as charge transfer between metal and boron moieties, energy barrier for interchanging hydrogens, and diffuseness of A increase along the series A = Sb < As < P < N; (e) in M(CO)5(BH3 · PH3), interaction energy is ordered as M = W > Cr > Mo, while energy barrier for interchanging hydrogens decreases in the order of M = Cr > W > Mo.  相似文献   

10.
Microcrystalline samples of Zn(NH3)2Br2 and Ni(NH3)2X2 (X is Cl and Br) have been investigated from 100 to 293 K using X-ray diffraction and IR spectroscopy measurements (range 400–4000 cm) performed with isotopically dilute (5% deuterated) samples. Values of Δν(ND)/ΔT for all compounds hint at the existence of hydrogen bonds. Zn(NH3)2Br2 shows The dynamics of ammonia molecules even at 100 K, and no indications are apparent that dynamic disorder of ammonia molecules takes place in Ni(NH3)2X2 (X is Cl and Br). A comparison between octahedrally coordinated ammoniates [Ni(NH3)6]Br2, Ni(NH3)2Br2 and [Zn(NH3)6]Br2 with tetrahedrally coordinated ones [Zn(NH3)2Br2] leads to the conclusion that the lower coordination number increases the strength of the hydrogen bonds. Because this effect is small, it is not possible to separate the influence of the type of coordinating ions for one coordination number from the influence of the coordination number itself.  相似文献   

11.
Density functional theory calculations at the B3LYP/6-31G(d,p) level of theory were performed on the members of the isoelectronic series CF3SO2X (X=F, OH, NH2, CH3), in order to obtain the optimized geometric parameters and conformations for the four molecules, as well as the wavenumbers corresponding to the normal modes of vibration and the associated force constants. The original force field was transformed to local symmetry coordinates and scaled to reproduce the experimental wavenumbers. The trends observed in geometrical parameters and force constants along the isoelectronic series could be explained making use of the calculated atomic charges.  相似文献   

12.
13.
The series of platinum complexes [PtCl(η2-CH2CH-C6H4-X)(tmeda)](ClO4) (X = H, 1b; 4-OMe, 1c; 3-OMe, 1d; 4-CF3, 1e; 3-CF3, 1f; 3-NO2, 1g; tmeda = N,N,N′,N′-tetramethyl-1,2-ethanediamine) has been considered. In the styrene complex (1b) both solution (NMR) and solid state (X-ray) data indicate a significant difference in the Pt-C bond lengths (the longer bond being that involving the olefin carbon atom carrying the phenyl ring). Such a difference increases when X is an electron donor group (EDG, 1c) and decreases when X is an electron withdrawing group (EWG, 1d-g). The attack of a nucleophile (MeO) to the substituted carbon (Markovnikov type, M) is by far the most favoured in the case of unsubstituted (1b) or EDG-substituted (1c) styrenes. The presence of an EWG (compounds 1d-g) levels off the probability of M and anti-M type of attack. DFT calculations on 1b,c and 1e were also performed. The NLMO analysis reveals the crucial role of the interaction between the filled π orbital of the olefin and the empty d orbital of platinum; the carbon with greater electron density becoming less susceptible of nucleophilic attack.  相似文献   

14.
The geometrical parameters and associated force constants for the molecules XSSX (X = H, halogen, CH3, CF3) were studied using DFT quantum chemistry calculations. The study showed rather monotonic trends in these properties related to the SS bonds, although an anomalous behavior is noted when the substituent is CF3. The calculated vibrational frequencies allowed a confirmation of published band assignments, but corrections were necessary for S2F2 and S2H2.  相似文献   

15.
The synthesis of novel N,N′,N″-tris(3-dimethylaminopropyl)-guanidine 1 is described and X-ray structure of its hexafluorophosphate salt measured (1H·PF6). The hydrogen bonding in protonated 1 and in 1H·PF6 is also discussed.  相似文献   

16.
Reactions of the fluorinated amines (CF3)2NH, CF3N(OCF3)H, CF3N[OCF(CF3)2]H, CF3NHF and SF5NHF with the strong acid HF/AsF5 form the corresponding ammonium salts Rf1Rf2NH2+AsF6? and RfNFH2+ AsF6? in high yield. [Rf1=CF3, Rf2=CF3, CF3O, (CF3)2CFO; Rf=CF3, SF5] The colorless crystalline solids are stable for prolonged periods at 22°C in sealed FEP containers. They have dissociation pressures at 22°C ranging from ~5 torr (RfNFH2+ AsF6?) to ~50 torr [CF3N(OCF3)H2+AsF6?]. 19F NMR and Raman spectroscopy were used to identify the compounds.  相似文献   

17.
The molecular structure of (trifluoromethyl)sulfanyl sulfinylimine, CF3---S---N=S=O, was determined by gas electron diffraction (GED) and ab initio calculations (HF/3–21G*, HF/6–31+G* and MP2/6–31+G*). Experimental and theoretical methods result in a structure with planar C---S---N=S=O skeleton (Cs symmetry), anti orientation of the S---C bond relative to the N=S bond and syn orientation of the S---N bond relative to the S=O double bond (anti-syn structure). The following skeletal parameters (ra values with 3σ uncertainties) were derived in the GED analysis: S---C, 1.831(4) Å; S---N, 1.684(5) Å; N=S, 1.538(6) Å; S=O, 1.453(6) Å; C---S---N, 94.6(8)°; S---N=S, 120.6(6)°; N=S=O: 116.5(8)°. A normal coordinate analysis based on FTIR (gas), FTIR (matrix) and Raman (liquid) spectra was performed. The UV (gas) spectrum was recorded and interpretation of the resonance Raman effect leads to the conclusion that the molecular symmetry (Cs) is retained upon electronic excitation.  相似文献   

18.
ANi(AsF6)3 (A = O2+, NO+, NH4+) compounds could be prepared by reaction between corresponding AAsF6 salts and Ni(AsF6)2. When mixtures of AF (A = Li, Na, K, Rb, Cs) and NiF2 are dissolved in aHF acidified with an excess of AsF5 the corresponding AAsF6 and Ni(AsF6)2 were formed in situ. For A = Li and Na only mixtures of AAsF6 and Ni(AsF6)2 were obtained, while for A = K, Rb and Cs, the final products were ANi(AsF6)3 (A = K-Cs) compounds contaminated with AAsF6 (A = K-Cs) and Ni(AsF6)2.ANi(AsF6)3 (A = H3O+, O2+, NO+, NH4+ and K+) compounds are structurally related to previously known H3OCo(AsF6)3. The main features of the structure of these compounds are rings of NiF6 octahedra sharing apexes with AsF6 octahedra connected into infinite tri-dimensional network. In this arrangement cavities are formed where single charged cations are placed.In O2Ni(AsF6)3 the vibrational band belonging to O2+ vibration is found at 1866 cm−1, which is according to the literature data one of the highest known values, and it is only 10 cm−1 lower than the value for free O2+.  相似文献   

19.
The reaction of Lu3+ or Yb3+ and H5IO6 in aqueous media at 180 °C leads to the formation of Yb(IO3)3(H2O) or Lu(IO3)3(H2O), respectively, while the reaction of Yb metal with H5IO6 under similar reaction conditions gives rise to the anhydrous iodate, Yb(IO3)3. Under supercritical conditions Lu3+ reacts with HIO3 and KIO4 to yield the isostructural Lu(IO3)3. The structures have been determined by single-crystal X-ray diffraction. Crystallographic data are (MoKα, λ=0.71073 Å): Yb(IO3)3, monoclinic, space group P21/n, a=8.6664(9) Å, b=5.9904(6) Å, c=14.8826(15) Å, β=96.931(2)°, V=766.99(13), Z=4, R(F)=4.23% for 114 parameters with 1880 reflections with I>2σ(I); Lu(IO3)3, monoclinic, space group P21/n, a=8.6410(9), b=5.9961(6), c=14.8782(16) Å, β=97.028(2)°, V=765.08(14), Z=4, R(F)=2.65% for 119 parameters with 1756 reflections with I>2σ(I); Yb(IO3)3(H2O), monoclinic, space group C2/c, a=27.2476(15), b=5.6296(3), c=12.0157(7) Å, β=98.636(1)°, V=1822.2(2), Z=8, R(F)=1.51% for 128 parameters with 2250 reflections with I>2σ(I); Lu(IO3)3(H2O), monoclinic, space group C2/c, a=27.258(4), b=5.6251(7), c=12.0006(16) Å, β=98.704(2)°, V=1818.8(4), Z=8, R(F)=1.98% for 128 parameters with 2242 reflections with I>2σ(I). The f elements in all of the compounds are found in seven-coordinate environments and bridged with monodentate, bidentate, or tridentate iodate anions. Both Lu(IO3)3(H2O) and Yb(IO3)3(H2O) display distinctively different vibrational profiles from their respective anhydrous analogs. Hence, the Raman profile can be used as a complementary diagnostic tool to discern the different structural motifs of the compounds.  相似文献   

20.
The synthesis of a bulky secondary phosphine, Ar2PH [Ar=C6H2(CF3)3-2,4,6], and its use in the first synthesis and isolation of a phosphonium phosphide, (Ph3PMe)+(Ar2P), via the deprotonation of Ar2PH with a nonstabilised phosphorus ylide, Ph3P=CH2, are reported. An X-ray structure of this salt reveals that cations and anions are weakly associated in the solid state through C–HP interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号