首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface structure and electrochemical performance have been investigated of petroleum cokes heat-treated at 2100 and 2600 °C (abbreviated to PC2100 and PC2600) and those fluorinated by elemental fluorine at 200 and 300 °C. XPS study indicated that surface fluorine was covalently bonded to carbon and surface fluorine contents were in the range of 4.9-17.8 at.%. Surface oxygen was reduced by fluorination. BET surface areas were nearly the same before and after fluorination. Fluorination enhanced D-band intensity in two Raman shifts observed at 1580 cm−1 (G-band) and 1360 cm−1 (D-band), indicating the increase in the surface disordering. At a high current density of 150 mA/g, the capacity increase was observed for PC2100 fluorinated at 200 °C and for PC2600 fluorinated at 200 and 300 °C. The most interesting result was the increase in first coulombic efficiencies by surface fluorination. First columbic efficiencies for PC2600 fluorinated at 300 °C were increased by 12.1% at 60 mA/g and by 25.8% at 150 mA/g, respectively. The impedance measurements showed that the resistances of surface films on carbon electrodes were increased by fluorination, however, the charge transfer resistances were decreased by 12.3% for PC2100 fluorinated at 200 °C, and by 27.5 and 6.4% for PC2600 fluorinated at 200 and 300 °C, respectively. The reduction of the charge transfer resistances was consistent with increase in the charge capacities for PC2100 fluorinated at 200 °C and PC2600 fluorinated at 200 and 300 °C.  相似文献   

2.
Surface modification of graphite powder has been performed by elemental fluorine and radiofrequency (rf) plasma fluorination. Both methods give rise to an enlargement of the surface areas of graphite samples and a change of the pore volume distribution. The capacities of surface-fluorinated graphite samples are higher than those of original samples and even more than the theoretical capacity of graphite, 372 mAh g−1, without any reduction of the first colombic efficiencies. The increments of the capacities are ∼5, 10, and 15% for graphite samples with average particle diameters of 7, 25 and 40 μm, respectively.  相似文献   

3.
Effect of surface fluorination and conductive additives on the charge/discharge behavior of lithium titanate (Li4/3Ti5/3O4) has been investigated using F2 gas and vapor grown carbon fiber (VGCF). Surface fluorination of Li4/3Ti5/3O4 was made using F2 gas (3 × 104 Pa) at 25-150 °C for 2 min. Charge capacities of Li4/3Ti5/3O4 samples fluorinated at 70 °C and 100 °C were larger than those for original sample at high current densities of 300 and 600 mA/g. Optimum fluorination temperatures of Li4/3Ti5/3O4 were 70 °C and 100 °C. Fibrous VGCF with a large surface area (17.7 m2/g) increased the utilization of available capacity of Li4/3Ti5/3O4 probably because it provided the better electrical contact than acetylene black (AB) between Li4/3Ti5/3O4 particles and nickel current collector.  相似文献   

4.
Recent results on the surface modification of petroleum cokes and their electrochemical properties as anodes of secondary lithium batteries are summarized. The surface of petroleum coke and those heat-treated at 1860-2800 °C were fluorinated by elemental fluorine (F2), chlorine trifluoride (ClF3) and nitrogen trifluoride (NF3). No surface fluorine was found except only one sample when ClF3 and NF3 were used as fluorinating agents while surface region of petroleum coke was fluorinated when F2 was used. Transmission electron microscopic (TEM) observation revealed that closed edge of graphitized petroleum coke was destroyed and opened by surface fluorination. Raman spectra showed that surface fluorination increased the surface disorder of petroleum cokes. Main effect of surface fluorination with F2 is the increase in the first coulombic efficiencies of petroleum cokes graphitized at 2300-2800 °C by 12.1-18.2% at 60 mA/g and by 13.3-25.8% at 150 mA/g in 1 mol/dm3 LiClO4-ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1, v/v). On the other hand, main effect of the fluorination with ClF3 and NF3 is the increase in the first discharge capacities of graphitized petroleum cokes by ∼63 mAh/g (∼29.5%) at 150 mA/g in 1 mol/dm3 LiClO4-EC/DEC.  相似文献   

5.
Cathode powders of the Li–Mn–Ni–O system have been prepared at a Mn/(Mn+Ni) ratio varying from 0 to 1. The solid state reaction method was used to obtain the cathode materials by mixing MnO2, LiCO3 and NiO. A 20% excess of lithium was used in the precursors. The materials produced were examined by X-rays to identify their structure. Batteries were assembled by using these materials as cathode with a liquid electrolyte consisting of EC/DC 1:1, 1 LiPF6 and Li anode. Their capacity, cycle fading and charge-discharge conditions were evaluated.Presented at the 3rd International Meeting "Advanced Batteries and Accumulators", June 16th–June 20th 2002, Brno, Czech Republic  相似文献   

6.
采用超声波混合、抽滤的方法把多壁碳纳米管(MWCNTs)和乙炔黑混合制备了锂离子电池用复合导电剂浆料,用扫描电子显微镜(SEM)和恒流充放电测试考察了复合导电剂的结构和其作为导电剂对LiCoO2电极放电比容量的影响。SEM的分析结果表明MWCNTs和乙炔黑实现了纳米层次的均匀混合。复合导电剂悬浮液和浆料分别被用作导电剂制成了两种LiCoO2电极,前一种电极为Cathode A,后一种电极为Cathode B,考察了不同MWCNTs含量时,两种电极0.5C第10次放电比容量的差异。实验结果表明,随着MWCNTs含量的增加,两种电极放电比容量的差值增大,说明低含量MWCNTs的复合导电剂浆料是一种理想的锂离子电池导电剂。  相似文献   

7.
锂离子二次电池碳负极材料的改性   总被引:5,自引:1,他引:5  
吴宇平  万春荣 《电化学》1998,4(3):286-292
作为锂离子二次电池的碳负极材料,其改性方面的研究内容主要有:引入非金属元素,引入金属元素,处理表面及其它方面。纺入的非金属元素有硼,硅,氮,磷和硫。引入的金属元素有钾,铝,镓和钒,镍,钴,铜,铁等过渡金属元素。表面处理的方法包括氧化,形成表面层等。  相似文献   

8.
LiMn2O4 was treated with F2 at room temperature (RT), 373 and 473 K under 1.3, 6.6 and 13.2 kPa-F2. XPS data indicate that two kinds of fluorine species may exist on the sample surface and the ratio of these fluorines is affected by choosing the reaction condition. The peak indicating Mnn+ bonded to fluorine appeared in the XPS spectra of Mn2p3/2 electron. From the results of the charge/discharge measurements, the efficiency of charge/discharge process for the sample fluorinated under 1.3, 6.6 and 13.2 kPa-F2 below 373 K was larger than that of untreated one. The discharge capacity of the fluorinated sample was also larger than that of untreated one. The discharge capacity, the loss of discharge capacity during 50 charge/discharge cycles, F/O ratio measured from XPS data and the intensity of the peak indicating Mnn+ bonded to fluorine in the XPS spectra were closely related to each other. The optimal fluorination condition was under 1.3 kPa-F2 at RT for 1 h.  相似文献   

9.
Three kinds of silicon-containing disordered carbons have been prepared by pyrolysis of polysiloxanes with different amounts of phenyl side groups. X-ray powder diffraction, X-ray photoelectron spectroscopy and electrochemical capacity measurements were performed to study their behaviors. Graphite crystallites, micropores, and silicon species affect their electrochemical performances. All of them present high reversible capacities, >372 mAh/g. Since the graphite crystallites are very small, they contribute very little to reversible capacity. The number of micropores produced by gas emission during the heat-treatment process decides whether they exhibit reversible capacity. Si mainly exists in the form C–Si–O and influences the irreversible capacity. There is no evident capacity fading in the first ten cycles, indicating promising properties for these disordered carbons.  相似文献   

10.
A sulfur-substituted disordered carbon is explored as anode material for lithium-ion battery. Its physical and electrochemical properties are characterized by a variety of techniques such as powder X-ray diffraction, element analysis, Fourier transform infrared spectrum, scanning electron microscopy, and typical electrochemical tests. Electrochemical tests show the activated carbon displays a first cycle discharge capacity of 1,216 mAh·g−1. It also has a remarkable cycling stability with an average capacity fade of 0.92% per cycle from 11th to 100th cycle in the range of 0.01–3.00 V versus metallic lithium at a current density of 100 mA·g−1. After 100 cycles, the electrode still maintained a capacity of 420 mAh·g−1.  相似文献   

11.
Direct fluorination of 1,3-dioxolan-2-one with elemental fluorine was successfully carried out to provide 4-fluoro-1,3-dioxolan-2-one, which was expected as an additive for lithium ion secondary battery. 4-Fluoro-1,3-dioxolan-2-one was also further fluorinated with elemental fluorine to give three isomers of difluoro derivatives by the same methodology. Another topic is the preparation of trifluoromethanesulfonyl fluoride, an intermediate of lithium battery electrolyte, by the reaction of methanesulfonyl fluoride with elemental fluorine. The use of perfluoro-2-methylpentane as a solvent gave satisfactory selectivity of trifluoromethanesulfonyl fluoride.  相似文献   

12.
Natural graphite samples with average particle sizes of 5, 10 and 15 μm (NG5 μm, NG10 μm and NG15 μm, respectively) were fluorinated by ClF3 (3 × 104 Pa) at 200 and 300 °C for 2 min. X-ray photoelectron spectra of surface-fluorinated samples showed that surface fluorine concentration increased with increase in the particle size of graphite and reaction temperature. Small amounts of chlorine were also detected in all the fluorinated samples. Raman spectra of original and surface-fluorinated samples indicated that the surface disordering was increased for NG10 μm and NG15 μm. Surface areas were decreased by the fluorination for NG5 μm and NG10 μm but unchanged for NG15 μm. The mesopores with diameter of 1.5-2 nm increased while those of 2-3 nm decreased for all the samples. First coulombic efficiencies for NG10 μm and NG15 μm were highly increased by surface fluorination in 1 mol/dm3 LiClO4-EC/DEC/PC (EC: ethylene carbonate, DEC: diethyl carbonate, PC: propylene carbonate) solution.  相似文献   

13.
A series of coin-type lithium secondary batteries with polyaniline positive electrodes was developed and commercialized which might be not only the first practical polymer battery but also the first industrial application of conducting polymers. Performances of the commercialized batteries were described in detail in this paper. In order to achieve the development the most important thing was the optimization of molecular structure and molphology of multiguise polyaniline as the electrode material. According to the findings obtained during the development, polyaniline sheet was prepared substantially to be composed of imino-1,4-phenylene (IP) and the cation radical of IP (IP+) by the novel procedure, not to include quinoid configuration of polyaniline (NP) which was proved to be electrochemically inactive in non-aqueous systems.  相似文献   

14.
本文采用壳聚糖-磷钨酸层对Nafion膜表面分别进行单面和双面修饰改性,研究了修饰模式对Nafion膜钒离子渗透率、电导率及离子选择性的影响. 结果表明,单面、双面修饰改性均会使Nafion膜的钒离子渗透率显著降低,最高降幅分别达到89.9% (单面修饰) 和92.7% (双面修饰);单面、双面修饰改性均会使Nafion膜的电导率下降,但存在明显差异,在相同修饰厚度条件下,双面修饰改性对Nafion膜电导率的影响比单面修饰改性更小。因此,双面修饰复合膜展示出了比单面修饰复合膜更高的离子选择性,并且在修饰层厚度为17 μm时达到最大值(1.12×105 S•min•cm-3). 基于优化的双面修饰Nafion膜的全钒液流电池,在充放电流密度30 mA•cm-2 时,库伦效率和能量效率分别达到93.5%和 80.7%, 并且在测试时间内展示出良好的循环稳定性.  相似文献   

15.
In present work, we report a new type rechargeable lithium battery, in which a Cu-cathode in aqueous electrolyte and a Li-anode in non-aqueous electrolyte are united together by a lithium super-ionic conductor glass film (LISICON) through which only lithium-ions can pass. During the charge–discharge process, combining with the dissolution–deposition of metallic Cu (or Li) electrode, lithium ions transfer between aqueous electrolyte solution and non-aqueous electrolyte solution. In Li–Cu system, for the first time, the dissolution/deposition process of metallic Cu was used as cathode reaction to replace the Li-insertion/extraction reaction within conventional lithium-ion battery. The Cu-cathode is renewable, and displays a high capacity. The concept of Li–Cu system may provide a new direction for future lithium batteries study.  相似文献   

16.
Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT@C) have been fabricated by a surfactant mediated sol-gel method followed by a carbonization process. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were produced by a wet-type beadsmill method. To obtain Si-CNT nanocomposites with spherical morphologies, a silica precursor (tetraethylorthosilicate, TEOS) and polymer (PMMA) mixture was employed as a structure-directing medium. Thus the Si-CNT/Silica-Polymer microspheres were prepared by an acid catalyzed sol-gel method. Then a carbon precursor such as polypyrrole (PPy) was incorporated onto the surfaces of pre-existing Si-CNT/silica-polymer to generate Si-CNT/Silica-Polymer@PPy microspheres. Subsequent thermal treatment of the precursor followed by wet etching of silica produced Si-CNT@C microcapsules. The intermediate silica/polymer must disappear during the carbonization and etching process resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT@C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT@C microcapsules were measured with a lithium battery half cell tests.  相似文献   

17.
In this work,via a facile solvothermal route,we synthesized an anode material for lithium ion batteries(LIBs)—SnS_2 nanoparticle/graphene(SnS_2 NP/GNs) nanocomposite.The nanocomposite consists of SnS_2nanoparticles with an average diameter of 4 nm and graphene nanosheets without restacking.The SnS_2 nanoparticles are firmly anchored on the graphene nanosheets.As an anode material for LIBs,the nanocomposite exhibits good Li storage performance especially high rate performance.At the high current rate of 5,10,and 20 A/g,the nanocomposite delivered high capacities of 525,443,and 378 mAh/g,respectively.The good conductivity of the graphene nanosheets and the small particle size of SnS_2contribute to the electrochemical performance of SnS_2 NP/GNs.  相似文献   

18.
Synthesis strategies, nanostructures, and different electrochemical performances are prominent features of rechargeable batteries. Three types Li2MSiO4 cathode metarials for lithium ion batteries:Li2FeSiO4, Li2MnSiO4, and Li2CoSiO4 are scientifically discussed, and the comprehensive summaries and evaluations are given in this review.  相似文献   

19.
电极/电解液界面不稳定是高压锂离子电池发展的主要瓶颈.提高界面稳定性是高压锂离子电池得以应用的前提.本文综述了碳酸酯基电解液氧化分解反应机理、新型耐高压溶剂体系和新型成膜添加剂实验与理论的研究进展.  相似文献   

20.
锂离子动力电池隔膜的研究及发展现状   总被引:1,自引:0,他引:1  
锂离子动力电池作为新能源汽车的动力之源受到广泛关注.本文对动力电池的重要组件之一——电池隔膜进行了介绍.围绕提高安全性和能量密度的设计目标,综述了其新材料、新技术的发展及现状.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号