首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent results on the surface modification of petroleum cokes and their electrochemical properties as anodes of secondary lithium batteries are summarized. The surface of petroleum coke and those heat-treated at 1860-2800 °C were fluorinated by elemental fluorine (F2), chlorine trifluoride (ClF3) and nitrogen trifluoride (NF3). No surface fluorine was found except only one sample when ClF3 and NF3 were used as fluorinating agents while surface region of petroleum coke was fluorinated when F2 was used. Transmission electron microscopic (TEM) observation revealed that closed edge of graphitized petroleum coke was destroyed and opened by surface fluorination. Raman spectra showed that surface fluorination increased the surface disorder of petroleum cokes. Main effect of surface fluorination with F2 is the increase in the first coulombic efficiencies of petroleum cokes graphitized at 2300-2800 °C by 12.1-18.2% at 60 mA/g and by 13.3-25.8% at 150 mA/g in 1 mol/dm3 LiClO4-ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1, v/v). On the other hand, main effect of the fluorination with ClF3 and NF3 is the increase in the first discharge capacities of graphitized petroleum cokes by ∼63 mAh/g (∼29.5%) at 150 mA/g in 1 mol/dm3 LiClO4-EC/DEC.  相似文献   

2.
The surface structure and electrochemical performance have been investigated of petroleum cokes heat-treated at 2100 and 2600 °C (abbreviated to PC2100 and PC2600) and those fluorinated by elemental fluorine at 200 and 300 °C. XPS study indicated that surface fluorine was covalently bonded to carbon and surface fluorine contents were in the range of 4.9-17.8 at.%. Surface oxygen was reduced by fluorination. BET surface areas were nearly the same before and after fluorination. Fluorination enhanced D-band intensity in two Raman shifts observed at 1580 cm−1 (G-band) and 1360 cm−1 (D-band), indicating the increase in the surface disordering. At a high current density of 150 mA/g, the capacity increase was observed for PC2100 fluorinated at 200 °C and for PC2600 fluorinated at 200 and 300 °C. The most interesting result was the increase in first coulombic efficiencies by surface fluorination. First columbic efficiencies for PC2600 fluorinated at 300 °C were increased by 12.1% at 60 mA/g and by 25.8% at 150 mA/g, respectively. The impedance measurements showed that the resistances of surface films on carbon electrodes were increased by fluorination, however, the charge transfer resistances were decreased by 12.3% for PC2100 fluorinated at 200 °C, and by 27.5 and 6.4% for PC2600 fluorinated at 200 and 300 °C, respectively. The reduction of the charge transfer resistances was consistent with increase in the charge capacities for PC2100 fluorinated at 200 °C and PC2600 fluorinated at 200 and 300 °C.  相似文献   

3.
Surface modification of graphite powder has been performed by chemical fluorination using elemental fluorine at 200 °C and 300 °C. This process leads to an increase of the BET surface area due to partial CC bond breaking. Surface analyses performed by secondary ions mass spectrometry have shown that the H + O content at the surface of graphite is significantly decreased by this fluorination treatment. Fluorinated graphite powders have been tested as negative electrodes in Li-ion battery, chronopotentiometry measurements have shown that the fluorinated graphite exhibits better electrochemical performances than raw graphite powder notably due to an increase of the surface area which allows the storage of a higher amount of lithium into the host lattice. In addition, impedance measurements performed in a delithiated state have shown a significant decrease of the total cell resistance, i.e. a decrease of both the charge transfer resistance and the resistance related to the solid electrolyte interface (SEI) layer.  相似文献   

4.
《Solid State Sciences》2007,9(9):777-784
Petroleum coke and those heat-treated at 1860 °C, 2100 °C, 2300 °C 2600 °C and 2800 °C (abbreviated as PC, PC1860, PC2100, PC2300, PC2600 and PC2800) were fluorinated by elemental fluorine of 3 × 104 Pa at 200 °C and 300 °C for 2 min. Natural graphite powder samples with average particle sizes of 5 μm, 10 μm and 15 μm (abbreviated as NG5μm, NG10μm and NG15μm) were also fluorinated by ClF3 of 3 × 104 Pa at 200 °C and 300 °C for 2 min. Transmission electron microscopic (TEM) observation revealed that closed edge of PC2800 was destroyed and opened by surface fluorination, which increased the first coulombic efficiencies of PC2300, PC2600 and PC2800 by 12.1–18.2% at 60 mA/g and by 13.3–25.8% at 150 mA/g in 1 mol/dm3 LiClO4–ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1 in volume). Light fluorination of NG10μm and NG15μm increased the first coulombic efficiencies by 22.1–28.4% at 150 mA/g in 1 mol/dm3 LiClO4–EC/DEC/PC (PC: propylene carbonate, 1:1:1 in volume).  相似文献   

5.
Natural graphite samples with average particle sizes of 5, 10 and 15 μm (NG5 μm, NG10 μm and NG15 μm, respectively) were fluorinated by ClF3 (3 × 104 Pa) at 200 and 300 °C for 2 min. X-ray photoelectron spectra of surface-fluorinated samples showed that surface fluorine concentration increased with increase in the particle size of graphite and reaction temperature. Small amounts of chlorine were also detected in all the fluorinated samples. Raman spectra of original and surface-fluorinated samples indicated that the surface disordering was increased for NG10 μm and NG15 μm. Surface areas were decreased by the fluorination for NG5 μm and NG10 μm but unchanged for NG15 μm. The mesopores with diameter of 1.5-2 nm increased while those of 2-3 nm decreased for all the samples. First coulombic efficiencies for NG10 μm and NG15 μm were highly increased by surface fluorination in 1 mol/dm3 LiClO4-EC/DEC/PC (EC: ethylene carbonate, DEC: diethyl carbonate, PC: propylene carbonate) solution.  相似文献   

6.
Fluorinated graphites (CF0.47) were obtained by reaction at room temperature of fluorine gas with graphite in the presence of boron trifluoride and hydrogen fluoride as catalysts. Their thermal treatments under fluorine at temperatures up to 600 °C lead to a progressive increase of the fluorine level resulting in an highly fluorinated graphite (CF1.02). Whatever the fluorination level, a stage one fluorine-graphite intercalation compound is obtained. The sp2 carbon hybridization is maintained for treatment temperature below 300 °C and two types of structure coexist for TT in the range 350-550 °C. Finally, above 550 °C, carbon hybridization is sp3.The resulting materials were studied by 11B, 1H, and 19F NMR and EPR at different experimental temperatures giving informations about the intercalated fluoride species, the temperature of their removal from the host fluorocarbon matrix, as well as their mobility.  相似文献   

7.
A series of double-chained phosphatidylcholines (PCs), 1,2-dioctadec-9′-ynoyl-sn-glycero-3-phosphocholine analogs containing perfluoroalkyl moieties (CF3, C2F5, n-C4F9 or n-C8F17) as the terminal segment in two hydrophobic chains, 1a-d, were synthesized. Equilibrium spreading pressures of these fluorinated PCs at the air-water interface were measured as an indication of monolayer stability, in order to obtain the minimal fluorine content in PC molecule efficient to exhibit monolayer stabilizing effect. The monolayer stability sigmoidally increased with the fluorine content in PC molecule and subsequently leveled off above a certain fluorine content, i.e., n-C4F9 moiety, at 25 °C. Under this condition, the replacement of at least five hydrogen atoms at the terminal hydrophobic segment in double-chained PC molecule by fluorine atoms, i.e., CF3CF2 moiety, is required to exhibit the monolayer stabilizing effect, whereas further fluorination of double-chained PC (F(CF2)n; n > 4) has a minor effect on the monolayer stability.  相似文献   

8.
A new synthetic procedure for the preparation of perfluoroalkanesulfonyl fluorides utilizing liquid-phase direct fluorination with elemental fluorine has been developed. Direct fluorination of a partially fluorinated ester, which has alkanesulfonyl fluoride in the end, was synthesized from non-fluorinated counterparts and perfluorinated acid fluoride according to the PERFECT process, gave the desired perfluorinated product in moderate yield as well as by-products arising from CS bond cleavage. The results of the direct fluorination of some model substrates suggest that the CS bond cleavage occurred due to radical formation at the α-position rather than the β-position.  相似文献   

9.
Crosslinked PTFE (XF) samples were fluorinated at 293-593 K under 0.7-101 kPa F2 and for 1 h to 7 days to improve its thermal stability. Because the weight uptake which may be caused by the fluorine addition was detected at room temperature, CC bonds in XF can be fluorinated and the fluorine content was saturated after 72 h. Weights of all samples increased more than that of original XF through additional fluorination of CC bonds, whereas it decreased by the chain-scission to form gaseous fluorocarbons such as CF4. The intensity ratio in IR spectra of the peaks correspond to the double bond (CFCF2) at 1785 cm−1 and the characteristic peaks of PTFE at 1794 cm−1, IPTFE/IPTFE was smaller for the fluorinated XF rather than that for XF. Average values of heat of crystallization (ΔHc) for all fluorinated XF samples were about 2 J/g higher than that of the original XF. The decomposition temperature calculated from the TG curves increased with increasing reaction temperature and reaction time up to 72 h. Thermal stability of XF was improved through fluorine gas treatment.  相似文献   

10.
Fluorination of single walled carbon nanotubes was carried out at low temperature in the −191/25 °C range under 1 atm pure fluorine gas. In such conditions, the resulting C–F bonding is significantly weaker than for samples fluorinated at 280 °C. If the fluorination is performed at low temperature, fluorine atoms can be then removed from the host structure by moderated heating until 300 °C or by vacuum without strong damage on the tubes. After thermal defluorination, the resulting sample can be refluorinated similarly than the pristine tubes.  相似文献   

11.
Effect of surface fluorination and conductive additives on the charge/discharge behavior of lithium titanate (Li4/3Ti5/3O4) has been investigated using F2 gas and vapor grown carbon fiber (VGCF). Surface fluorination of Li4/3Ti5/3O4 was made using F2 gas (3 × 104 Pa) at 25-150 °C for 2 min. Charge capacities of Li4/3Ti5/3O4 samples fluorinated at 70 °C and 100 °C were larger than those for original sample at high current densities of 300 and 600 mA/g. Optimum fluorination temperatures of Li4/3Ti5/3O4 were 70 °C and 100 °C. Fibrous VGCF with a large surface area (17.7 m2/g) increased the utilization of available capacity of Li4/3Ti5/3O4 probably because it provided the better electrical contact than acetylene black (AB) between Li4/3Ti5/3O4 particles and nickel current collector.  相似文献   

12.
The development of ultra-inert composites using fluorinated carbon fibres as the reinforcement requires fluorinated carbon fibres with a durable surface composition. Here we report the effect of direct fluorination using an F2/N2 mixture at 653 K on the surface and bulk properties of two types of high strength carbon fibres. These were treated up to a surface fluorine content of ∼64 at.% and a bulk fluorine content of ∼15 mass%. A colour change was observed after fluorination caused by the changes in the graphitic band structure of the carbon fibres by the introduction of carbon sp3 hybridisation. The tensile strength and Young's modulus decrease after fluorination by up to 33 and 22%, respectively. XRD shows marginal changes in the interlayer distance but the crystallite size increases. Changes in the electrical conductivity of the fluorinated carbon fibres indicate that the modification is confined to the near surface volume. Predominantly covalent C-F bonds are formed as shown by X-ray photoelectron spectroscopy (XPS) and measured zeta (ζ)-potentials. Hence the fluorinated fibres are hydrophobic and have low surface tensions. This and the large increase in fibre surface area, as determined by nitrogen adsorption, is expected to facilitate interfacial interaction between fluorinated carbon fibres and fluoropolymers.  相似文献   

13.
Perfluoro-2-methylene-1,3-dioxolane (III) was synthesized and polymerized with an initiator, perfluoro dibenzoyl peroxide, and a white solid product III-P was quantitatively isolated. The polymer was insoluble in organic solvents including fluorinated solvents such as Fluorinert FC 75 and hexafluorobenzene, but dissolved in hexafluorobenzene by heating at around 140 °C in a sealed ampoule. The X-ray measurement showed that III-P was semi-crystalline and melted at 230 °C. The IR spectrum of III-P indicated that the polymer obtained did not show carbonyl peak and it was the vinyl addition product. When the solid product was heated above the melting temperature and pressed under 100-200 kg/cm2, we obtained an amorphous and flexible film, which is transparent from the UV region to the near IR region. The glass transition temperature was 110 °C and refractive indexes were 1.3443, 1.3434 and 1.3373 at 633, 839 and 1544 nm, respectively. The film did not degrade in concentrated sulfuric acid and aqueous sodium hydroxide solutions even heated at 80-90 °C for 2 days. The film was thermally stable and began to decompose at 300 °C under air atmosphere.  相似文献   

14.
A soft synthesis route based on the sol-gel process was used for preparing rare-earth tetrafluoride powders from alkoxide precursors. In-situ fluorination was performed by decomposition of a fluorine containing organic compound named 1,1,1-trifluoro-5-methyl-2,4-hexanedione when sintering the as-prepared xerogel to produce crystallized samples. Both to insure complete departure of organic residues as well as to avoid any oxidation into oxyfluoride, annealing treatment was carried out under fluorine atmosphere. Free-oxygen content of resulting samples was evidenced by infrared and Raman spectroscopies. X-ray absorption spectroscopies (XAS) and 19F nuclear magnetic resonance (NMR) studies showed that samples heat treated at 300 °C are already crystallized but for a full crystallization in LiGdF4 and LiYF4 a thermal treatment at 550 °C is needed. Temperature dependence of powder morphology was analyzed by scanning electron microscopy (SEM).  相似文献   

15.
The direct fluorination of polyvinylidenefluoride (PVDF) and the copolymer of tetrafluoroethylene with ethylene (CTE) was studied at 35-300 K. The dependence of radical formation on temperature and reaction time was obtained by use of electron paramagnetic resonance (EPR) spectroscopy. Primary alkyl radicals formed as a result of the reaction of fluorine abstracting a hydrogen from the polymer were detected at 35 K. These radicals rapidly react with molecular oxygen producing long-lived (∼48 h at 300 K) peroxy radicals. The peroxy radicals when subjected to UV-irradiation (λ < 280 nm) give rise to other radicals that are not stable at T > 77 K. The concentration of the radicals produced during fluorination of PVDF at 77-200 K is one order of magnitude less than that formed from CTE under similar conditions. A mechanism based on the abstraction of the H and the energies of the C-H bonds is given. Density functional theory was used to predict the structures and EPR parameters for a number of fluorinated radicals to explain the observed spectra. The FOO radical was detected at low temperatures.  相似文献   

16.
Multiwall carbon nanotubes (MWNTs) based on the template carbonization technique were fluorinated in a temperature range 323-473 K by elemental fluorine. The fluorination of the carbon nanotubes results in functionalization and modification of pristine nanotubes with respect to adsorption and electrochemical properties. Selective fluorination of the inner surface of the carbon nanotubes, brings about a decrease in the surface free energy of the inner surface of the tubes and an increase in colombic efficiency of Li/nanotubes rechargeable cells in an aprotic medium. Electrochemical fluoride-ion doping of fullerene C60 thin films (250-450 nm) was carried out in a fluoride-ion conductive solution, MeCN solution of 1 M Et4NF·4HF. Galvanostatic oxidation yielded C60Fca.1-3 where fluorine exists as a semi-ionic species in the cavity surrounded by C60 molecules without forming covalent CF bonds  相似文献   

17.
Durand  E.  Labrugère  C.  Tressaud  A.  Renaud  M. 《Plasmas and Polymers》2002,7(4):311-325
Because of their exceptional reactivity, fluorine and fluorinated gases are of primary importance for the modification of the surface properties of materials. This study is devoted to surface treatment of thin nitrile gloves, made of carboxylated nitrile butadiene rubber latex, using either direct fluorination (10% F2gas diluted in N2) or plasma-enhanced fluorination in radio-frequency cold plasmas using fluorinated gases (CF4, CHF3). Mechanisms of fluorination of these co-elastomers have been proposed on the basis of the assignment of the different components of the XPS spectra. Several mechanisms have been observed depending on the fluorination conditions. Although the modification of nitrile gloves is already effective for fluorination reactions at room temperature, an important activation is observed for experiments carried out at 90°C. When the treatments are carried out at room temperature, a gradual fluorination occurs: in the case of 10% diluted F2 gas, monofluorinated C—F groups are the species most found at the surface and perfluoro groups CF n are present in lower amount. An addition reaction takes place at the CH=CH double bonds of the polybutadiene entities, leading to CHF=CHF units. Whatever the fluorination method, thermal activation yields a more massive fluorination of the surface that finally leads to perfluorinated CF2 groups and terminal —CF3 groups.  相似文献   

18.
Modifications of the optical properties of poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] induced by fluorination of the vinylene units are investigated by means of time dependent density functional theory (TD-DFT) calculations and spectroscopic measurements in solution. The energy of the main absorption peak is blue-shifted by more than 0.8 eV in the fluorinated polymers. TD-DFT excitation energies for non-fluorinated and fluorinated oligomer structures of increasing number of monomers, employing fully relaxed geometries, are compared to the experimental absorption energies of the polymers. We found that the measured large blue-shift induced by the fluorination of the vinylene units is not caused by the electron-withdrawing effect of the fluorine substituents but it is related to a steric effect. The inter-monomer torsional angle of the fluorinated structures increases above 50 degrees , while in the non-fluorinated systems it is below 20 degrees . Further insight into the origin of the large blue-shift of the excitation energies is gained by a detailed analysis of the torsional potentials of non-fluorinated and fluorinated dihydroxystilbene. While for planar geometries the energy gap increases due to fluorination, it decreases for highly distorted geometries. In addition, we found that the torsional potential of dihydroxystilbene is rather flat, meaning that different isomers might, e.g., in the solid state, coexist.  相似文献   

19.
A new synthetic procedure for the preparation of perfluorinated carboxylic acid membrane monomers from non-fluorinated compounds has been developed. A key step in the synthetic route is liquid-phase direct fluorination reaction with elemental fluorine. Direct fluorination of a partially fluorinated diester, which was prepared from a hydrocarbon diol and a perfluorinated acyl fluoride, followed by thermal elimination, gave a perfluorinated diacyl fluoride, which is a precursor of a perfluorinated carboxylic acid membrane monomer.  相似文献   

20.
In this study, we synthesized a series of fluorinated and non-fluorinated tolanes, in which one or more fluorine atoms were systematically introduced into one aromatic ring of a tolane scaffold, and systematically evaluated their photophysical properties. All the tolanes with or without fluorine substituents were found to have poor photoluminescence (PL) in tetrahydrofuran (THF) solutions. On the other hand, in the crystalline state, non-fluorinated and fluorinated tolanes with one or four fluorine atoms were less emissive, whereas fluorinated tolanes with three or five fluorine atoms exhibited high PL efficiencies (ФPL) up to 0.51. X-ray crystallographic analyses of the emissive fluorinated tolanes revealed that the position of the fluorine substituent played a key role in achieving a high ФPL. Fluorine substituents at the ortho (2/6) and para (4) positions led to tight and rigid packing due to plural π–π stacking and/or hydrogen bonding interactions, resulting in enhanced ФPL caused by the suppression of non-radiative deactivation. Additionally, fluorinated tolanes with three fluorine atoms exhibited notable aggregation-induced PL emission enhancement in THF/water mixed solvents. This demonstrates that the PL characteristics of small PL materials can be tuned depending on the usage requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号