首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Thin films of rhodium have been prepared starting from dicarbonyl-2.4-pentadionato-rhodium(I), Rh(CO)2C5H7O2, by plasma enhanced CVD. The dependence of the deposition rate and film properties on substrate temperature, partial pressure of the organometallic and on hydrogen has been studied. Metal contents of 100% and thin-film resistivities as low as 5 times the bulk resistivity of rhodium have been achieved.  相似文献   

2.
Plasma-enhanced chemical vapour deposition of silver films has been performed using perfluoro-1-methylpropenylsilver as a precursor. Under most conditions of rf power, substrate temperature and gas composition shiny films with resistivities of 2 cm and impurities of 1 % are obtained.  相似文献   

3.
Novel volatile cyclooctatetraenyl-pentamethylcyclopentadienyl sandwich complexes have been used as precursors to deposit thin yttrium and rare earth oxide films by means of PECVD. These compounds form pure oxide films in plasmas of argon/oxygen or argon/water-vapour, in nitrous oxide, and carbon dioxide at substrate temperatures of 350–400° C and power densities of 1.0–1.5 W/cm2.The films were characterized by metal analysis, carbon analysis, XPS, CTEM electron diffraction, SEM micrographs, and FTIR spectra.  相似文献   

4.
The adhesion of copper to PTFE has been studied with regard to the influence of a pretreatment in discharges of reactive gases, such as O2 and CF4/O2, and a subsequent deposition of thin metallic interlayers of Pd, Pt, Au, and Cu by PECVD methods. Adhesion forces could be enhanced by about the factor of 10 compared with merely pretreated surfaces up to 5 N/mm, which, as scanning electron micrographs prove, corresponds to the tensile strength of the bulk material. SIMS spectra of the back surface of a peeled copper stripe show the typical signals of PTFE. The thermal stability of the layers was established by dipping the samples into a tin bath of 540 K. The enhanced adhesion is not only due to the changes in surface morphology by etching. It can be attributed to chemical effects, i. e. chemical bonds between substrate atoms and the interlayer, and physical effects, caused by implantation of metal ions into the upper surface layers accompanied by a probable electron transfer from PTFE to metal.  相似文献   

5.
Thin films of zirconium nitride have been deposited at temperatures as low as 573 K by PECVD using tetrakis(diethylamido)zirconium, Zr[N(C2H5)2]4 as precursor. The influence of the various experimental parameters on film properties and deposition rates has been studied. Under most experimental conditions hard coatings of good adherence and low carbon contamination resulted.  相似文献   

6.
ThemetalorganicplasmaenhancedChemicalVapourDeposition (MOPECVD) of gold films at room temperature using dimethyl(2,4-pentane-dionato)gold(III) as starting material is reported. By adding oxygen or propene to the rf glow discharge, films of Au oxide and of a composite gold polymer, respectively, were obtained.  相似文献   

7.
Thin films of magnesium oxide have been deposited on glass, quartz, stainless steel, and nickel by plasma enhanced chemical vapour deposition using 2,2,6,6-tetramethyl-heptanedionato-3,5-magnesium(II) (Mg(thd)2) as precursor. The films show (100)-orientation when deposited at temperatures 673 K. The influence of experimental parameters on deposition rate and film properties has been studied.On leave from the Beijing Solar Energy Research Institute, Beijing, China  相似文献   

8.
Thin films of aluminium oxide have been deposited on glass, quartz, Si(100), steel, nickel, and aluminium by plasma-enhanced chemical vapour deposition (PECVD) using aluminium acetylacetonate (Al(acac)3) as precursor. The deposits are hard (up to 2370 HK) and show good adherence to the substrates. The influence of various experimental parameters on deposition rate, film composition and hardness has been studied. The bias turned out to be the most effective parameter.On leave from Beijing Solar Energy Research Institute, Beijing, P.R. China  相似文献   

9.
2 O3 thin films by plasma-enhanced chemical vapour deposition (PECVD) using trimethyl-amine alane (TMAA) as the Al precursor. The thin films were deposited on both Si and quartz silica (SiO2) substrates. Deposition rates were typically 60 Å min-1 keeping the TMAA temperature constant at 45 °C. The deposited Al2O3 thin films were stoichiometric alumina with low carbon contamination (0.7–1.3 At%). The refractive index ranged from 1.54 to 1.62 depending on the deposition conditions. The deposition rate was studied as a function of both the RF power and the substrate temperature. The structure and the surface of the deposited Al2O3 thin films were studied using X-ray diffraction, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Received: 20 May 1997/Accepted: 12 June 1997  相似文献   

10.
(001) textured PbTiO3 thin films have been deposited on (001) redopingn-Si substrates by metalorgnic chemical vapor deposition (MOCVD) under reduced pressure, and the film ferroelectricity has been measured using the substrate as bottom electrode directly. Besides this investigation, a set of analysis including AFM surface morphology, SEM cross section morphology, electron-probe element analysis, XRD 0-20 scan and high temperature X-ray diffraction have been carried out to study the microstructure and phase transition process of the PbTiO3 thin film.  相似文献   

11.
Large-area, 1-μm-thick cubic boron nitride (cBN) films were deposited on (001) silicon substrates by electron-cyclotron-resonance-enhanced microwave-plasma chemical vapor deposition (ECR-MP CVD) in a mixture of He-Ar-N2-BF3-H2 gases. With the assistance of fluorine chemistry in the gas phase and substrate reactions, the phase purity of the sp3-configuration was improved to over 85% at a reduced substrate bias voltage of -40 V. The grown films show clear Raman transversal optical (TO) and longitudinal optical (LO) phonon vibration modes, characteristic of cBN. Such Raman spectral characteristics are the first ever observed in cBN films prepared under ECR-MP CVD conditions. Received: 3 May 2002 / Accepted: 7 May 2002 / Published online: 22 November 2002 RID="*" ID="*"Corresponding author. Fax: +852-2788/7830, E-mail: apwjzh@cityu.edu.hk  相似文献   

12.
Highly conductive and transparent indium tin oxide (ITO) thin films, each with a thickness of 100 nm, were deposited on glass and Si(100) by direct current (DC) magnetron sputtering under an argon (Ar) atmosphere using an ITO target composed of 95% indium oxide and 5% tin oxide for photon-STM use. X-ray diffraction, STM observations, resistivity and transmission measurements were carried out to study the formation of the films at substrate temperatures between 40 and 400 °C and the effects of thermal annealing in air between 200 and 400 °C for between1 and 5 h. The film properties were highly dependent on deposition conditions and on post-deposition film treatment. The films deposited under an Ar atmosphere pressure of ∼1.7×10-3 Torr by DC power sputtering (100 W) at substrate temperatures between 40 and 400 °C exhibited resistivities in the range 3.0–5.7×10-5 Ω m and transmissions in the range 71–79%. After deposition and annealing in air at 300 °C for 1 h, the films showed resistivities in the range 2.9–4.0×10-5 Ω m and transmissions in the range 78–81%. Resistivity and transmission measurements showed that in order to improve conductive and transparent properties, 2 h annealing in air at 300 °C was necessary. X-ray diffraction data supported the experimental measurements of resistivity and transmission on the studies of annealing time. The surface roughness and film uniformity improve with increasing substrate temperature. STM observations found the ITO films deposited at a substrate temperature of 325 °C, and up to 400 °C, had domains with crystalline structures. After deposition and annealing in air at 300 °C for 1 h the films still exhibited similar domains. However, after deposition at substrate temperatures from 40 °C to 300 °C, and annealing in air at 300 °C for 1 h, the films were shown to be amorphous. More importantly, the STM studies found that the ITO film surfaces were most likely to break after deposition at a substrate temperature of 325 °C and annealing in air at 300 °C for 2 or 3 h. Such findings give some inspiration to us in interpreting the effects of annealing on the improvement of conductive and transparent properties and on the transition of phases. In addition, correlations between the conductive/transparent properties and the phase transition, the annealing time and the phase transition, and the conductive/transparent properties and the annealing time have been investigated. Received: 10 July 2000 / Accepted: 27 October 2000 / Published online: 9 February 2001  相似文献   

13.
In this paper, we report on the preparation of lead zirconate films for the first time using atomic layer deposition in an attempt to investigate some of the film properties and also to evaluate possible use of the precursor combination to prepare more complex lead titanate zirconate. In the depositions tetraphenyl lead (Ph4Pb) was used as the lead and zirconium 2,2,6,6-tetramethyl-3,5-heptadionato (Zr(thd)4) as the zirconium precursor, while ozone was used as the oxygen source. Film growth, stoichiometry and quality were studied using different pulsing ratios at deposition temperatures of 275 and 300 °C. According to X-ray diffraction, the crystalline perovskite phase was observed when films deposited on SrTiO3(1 0 0) were annealed at 600 °C. Surface roughness was reduced for lead deficient films as well as in annealed samples.  相似文献   

14.
Thin insulating and c-axis oriented films of La2CuO4 are grown using a molecular beam epitaxy technique. Subsequently, these films are oxidized electrochemically using a 1N KOH solution. This approach is used to induce superconductivity, leading to a maximum Tc0 of 31 K,, measured both resistively and inductively. The surface morphology, lattice constants and the resistivity before and after the electrochemical treatment are compared.  相似文献   

15.
Thin films of pure copper have been deposited on glass and Si(100) substrates using copper acetylacetonate [Cu(acac)2] and copper HexaFluoroAcetylacetonate [Cu(HFA)2] sources. A thermal, cold-wall, reduced pressure (3325–5985 Pa) Metal-Organic Chemical Vapor Deposition (MOCVD) process was employed. The effect of H2O vapor on the grain size, deposition rate, and resistivity was examined. Electrical resistivities of 2.4 cm for copper films deposited on Si(100) and 3.44 cm for copper films deposited on glass at substrate temperatures of 265° C and a [Cu(acac)2] source temperature of 147° C with the use of H2O vapor were measured. When [Cu(HFA)2] was used, the substrate temperature was 385° C and the source temperature was 85° C. An activation energy for the copper film deposition process was calculated to be 22.2 kJ/mol in the case of the [Cu(acac)2] source. A deposition rate of 11 nm/min was obtained with Cu(acac)2 as the source and the rate was 44.4 nm/min with the Cu(HFA)2 source; both were obtained with the use of H2O vapor. No selectivity was observed with either source for either substrate. The deposited films were fully characterized using XRD, LVSEM, SAXPS, and RBS.  相似文献   

16.
Tin dioxide (SnO2) thin films were deposited by plasma enhanced-atomic layer deposition (PE-ALD) on Si(1 0 0) substrate using dibutyl tin diacetate (DBTA) ((CH3CO2)2Sn[(CH2)3-CH3]2) as precursor. The process parameters were optimized as a function of substrate temperature, source temperature and purging time. It is observed that the surface phenomenon of the thin films was changed with film thickness. Atomic force microscopy (AFM) images and X-ray diffraction (XRD) pattern were used to observe the texture and crystallanity of the films. The films deposited for 100, 200 and 400 cycles were characterized by XPS to determine the chemical bonding properties. XPS results reveal that the surface dominant oxygen species for 100, 200 and 400 cycles deposited films are O2, O and O2−, respectively. The 200 cycles film has exhibited highest concentration of oxygen (O) species before and after annealing. Conductivity studies revel that this film has best adsorption strength to the oxygen ions forming on the surface. The sensor with 200 cycles SnO2 thin film has shown highest sensitivity to CO gas than other films. A correlation between the characteristics of Sn3d5/2 and O1s XPS spectra before and after annealing and the electrical behavior of the SnO2 thin films is established.  相似文献   

17.
Utilizing BCl3 reaction on Ge(1 0 0) and subsequent Si epitaxial growth by SiH4 reaction at 300 °C, B atomic-layer doping in Si/Ge(1 0 0) heterostructure was investigated. Cl atoms on the B atomic-layer formed Ge(1 0 0) scarcely affect upon the SiH4 reaction. It is also found that Si atom amount deposited by SiH4 reaction on Ge(1 0 0) is effectively enhanced by the existence of B atomic layer and the deposition rate tends to decrease at around 2-3 atomic layers which is three times larger than that in the case without B. The results of angle-resolved X-ray photoelectron spectroscopy show that most B atoms are incorporated at the heterointerface between the Si and Ge.  相似文献   

18.
This paper investigates the structure and surface characteristics, and electrical properties of the polycrystalline silicon-germanium (poly-Si1−xGex) alloy thin films, deposited by vertical reduced pressure CVD (RPCVD) in the temperature range between 500 and 750 °C and a total pressure of 5 or 10 Torr. The samples exhibited a very uniform good quality films formation, with smooth surface with rms roughness as low as 7 nm for all temperature range, Ge mole fraction up to 32% (at 600 °C), textures of 〈2 2 0〉 preferred orientation at lower temperatures and strong 〈1 1 1〉 at 750 °C, for both 5 and 10 Torr deposition pressures. The 31P+ and 11B+ doped poly-Si1−xGex films exhibited always lower electrical resistivity values in comparison to similar poly-Si films, regardless of the employed anneal temperature or implantat dose. The results indicated also that poly-Si1−xGex films require much lower temperature and ion implant dose than poly-Si to achieve the same film resistivity. These characteristics indicate a high quality of obtained poly-Si1−xGex films, suitable as a gate electrode material for submicron CMOS devices.  相似文献   

19.
Direct selective metal deposition on semiconductors is of interest to electronic device technology, in particular for interconnects and Schottky devices. In this study, we investigate selective copper electrodeposition on patterned tantalum oxide thin films. Cyclic voltammetry studies show that thick tantalum oxide thin films have insulating properties while oxide films thinner than a critical value are semiconductors. Copper films electrodeposited on tantalum oxide thin films are known to form Schottky contacts. We demonstrate the formation of copper patterns on pre-patterned tantalum oxide films by a simple process: an insulating tantalum oxide film was grown electrochemically, the film was then mechanically scratched followed by mild oxidation to produce a thin tantalum oxide film inside the scratch. Based on the differential behavior of thin and thick tantalum oxide films, metal lines were electrodeposited selectively under formation of Schottky junctions. The process demonstrated in this paper is compatible to standard processes for semiconductor device fabrication while permitting flexible prototyping for research at small scales.  相似文献   

20.
We have investigated the phase separation and silicon nanocrystal (Si NC) formation in correlation with the optical properties of Si suboxide (SiOx, 0 < x < 2) films by thermal annealing in high vacuum. The SiOx films were deposited by plasma-enhanced chemical vapor deposition at different nitrous oxide/silane (N2O/SiH4) flow ratios. The as-deposited films show increased Si concentration with decreasing N2O/SiH4 flow ratio, while the deposition rate and surface roughness have strong correlations with the flow ratio in the N2O/SiH4 reaction. After thermal annealing at temperatures above 1000 °C, Fourier transform infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy manifest the progressive phase separation and continuous growth of crystalline-Si (c-Si) NCs in the SiOx films with increasing annealing temperature. We observe a transition from multiple-peak to single peak of the strong red-range photoluminescence (PL) with increasing Si concentration and annealing temperature. The appearance of the single peak in the PL is closely related to the c-Si NC formation. The PL also redshifts from ∼1.9 to 1.4 eV with increasing Si concentration and annealing temperature (i.e., increasing NC size). The good agreements of the PL evolution with NC formation and the PL peak energy with NC size distribution support the quantum confinement model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号