首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of electromagnetic forces and the forces of viscous friction with the arc plasma flow in the flow formation within the cathode melt is considered within the framework of numerical modelling; a comparative estimation of the separate influence of each of the above forces is carried out. The melt flow pattern is found to form mainly by electromagnetic forces. The character of the effect of electromagnetic forces is determined to a considerable extent by the ratio of the radius of cathode attachment of the arc on the melt droplet and the rod cathode radius.  相似文献   

2.
Numerical computations of the electric-arc heating and anode melting were carried out within the framework of the two-dimensional unsteady mathematical model. The influence of the viscous interaction ??plasma-melt??, surface tension forces, electromagnetic forces, and gravitational convection on the formation of the hydrodynamics of the anode melt was considered.  相似文献   

3.
通过电弧模型与熔池模型耦合数值模拟,研究了氩弧和氦弧特性及其对SUS304不锈钢钨极惰性气体保护(TIG)焊熔池形貌的影响.通过比较氩弧和氦弧的温度轮廓线以及阳极表面电流密度和热流密度分布发现,氦弧的径向距离比氩弧收缩明显,导致更多热量传递给阳极.模拟了氩弧和氦弧下浮力、电磁力、表面张力和气体剪切力分别对熔池形貌的影响.结果表明:不论是在氩弧还是在氦弧下熔池中表面张力是影响熔池形貌的最主要驱动力.在氩弧下,影响熔池形貌的另一个重要的驱动力是气体剪切力,而氦弧下则是电磁力.由于电磁力引起的内对流运动增加了熔深,从而导致相同氧含量时氦弧下的熔深和焊缝深宽比要高于氩弧下的熔深和焊缝深宽比.随着氧含量的增加,氩弧和氦弧下的焊缝深宽比均先增加而后保持不变.焊缝深宽比的模拟结果与实验结果符合较好. 关键词: 氩弧 氦弧 电弧特性 熔池形貌  相似文献   

4.
The physical characteristics of a plasma arc affect the stability of the keyhole and weld pool directly during keyhole plasma arc welding(KPAW). There will be significant change for these characteristics because of the interaction between the keyhole weld pool and plasma arc after penetration. Therefore, in order to obtain the temperature field, flow field, and arc pressure of a plasma arc under the reaction of the keyhole, the physical model of a plasma arc with a pre-set keyhole was established. In addition, the tungsten and base metal were established into the calculated domain, which can reflect the effect of plasma arc to weld pool further. Based on magneto hydrodynamics and Maxwell equations, a two-dimensional steady state mathematical model was established. Considering the heat production of anode and cathode, the distribution of temperature field, flow field, welding current density, and plasma arc pressure were solved out by the finite difference method. From the calculated results, it is found that the plasma arc was compressed a second time by the keyhole. This additional constraint results in an obvious rise of the plasma arc pressure and flow velocity at the minimum diameter place of the keyhole, while the temperature field is impacted slightly. Finally, the observational and metallographic experiments are conducted, and the shapes of plasma arc and fusion line agree with the simulated results generally.  相似文献   

5.
A straight, steady-state cross-flow arc is burning in an N2 wind tunnel. The arc is held in position by the balance of the Lorentz forces produced by an external magnetic field perpendicular to the arc axis and by the viscous forces of the gas flow acting on the arc column. The temperature field in the discharge is determined spectroscopically using the radiation of N I lines. Because of the lack of rotational symmetry an inversion method developed by Maldonado was used to determine the local emission coefficient from the measured integrated spectral intensity distributions across the arc in various directions. For known local temperature the mass flow field inside the arc may be evaluated from the convective term of the energy equation and the continuity equation. This is done by expanding the terms of these two equations around the point of the temperature maximum into Fourier-Taylor series and determining coefficients of the same order and power. The solution of the resulting set of algebraic equations yields the unknown coefficients of the mass flow. The flow field obtained by these calculations shows a relatively strong counterflow through the arc core. In the region for which the series expansion holds a partial structure pertaining to a closed double vortex can be recognized. The terms of the momentum equation are calculated on the basis of these results. In order to obtain a better understanding of the importance attributed to the individual local forces acting on the plasma, a simple model was devised which separates the momentum equation into gradient and curl terms. The discussion shows that the gradient part of the Lorentz force causes mainly the pressure gradient, while the much smaller rotational part of thej×B forces is responsible for propelling the mass flow. The momentum transport inside the arc as well as in its neighbourhood is due to the viscous forces and to the pressure gradient. By contrast, at larger distances from the arc it is essentially the inertial force that determines the momentum transport. It is shown that viscosity as a damping mechanism is necessary for the existence of stationary flow fields as investigated in this work.  相似文献   

6.
通过耦合迭代求解流体力学方程和电磁场方程,数值模拟了转移式自由燃烧电弧和具有细长中间段及突扩阳极结构的壁稳式非转移直流电弧的流场,分析了洛伦兹力对这两种典型直流电弧流场的影响。结果显示:在自由燃烧电弧情况下,电流自感磁场的洛伦兹力对流场特性有显著影响,自磁压缩是约束电弧的主要机制;而在壁稳式非转移直流电弧情况下,相对于强壁面约束和气动力作用而言,洛伦兹力对流场的影响有限。特别在中间段出口以后,洛伦兹力与气动力的比值小于0.010,因此,当主要考虑壁稳式非转移直流电弧发生器出口参数时,为了提高数值模拟效率,可忽略洛伦兹力的作用。  相似文献   

7.
In the hybrid laser-arc welding process, a laser beam and an electric arc are coupled in order to combine the advantages of both processes: high welding speed, low thermal load and high depth penetration thanks to the laser; less demanding on joint preparation/fit-up, typical of arc welding. Thus the hybrid laser-MIG/MAG (Metal Inert or Active Gas) arc welding has very interesting properties: the improvement of productivity results in higher welding speeds, thicker welded materials, joint fit-up allowance, better stability of molten pool and improvement of joint metallurgical quality. The understanding of the main relevant involved physical processes are therefore necessary if one wants for example elaborate adequate simulations of this process. Also, for an efficient use of this process, it is necessary to precisely understand the complex physical phenomena that govern this welding technique. This paper investigates the analysis of the effect of the main operating parameters for the laser alone, MAG alone and hybrid Laser/MAG welding processes. The use of a high speed video camera allows us to precisely characterize the melt pool 3D geometry such as the measurements of its depression and its length and the phenomena occurring inside the melt pool through keyhole-melt pool-droplet interaction. These experimental results will form a database that is used for the validation of a three-dimensional thermal model of the hybrid welding process for a rather wide range of operating parameters where the 3-D geometry of the melt pool is taken into account.  相似文献   

8.
While Part I deals with cylindrical arcs, Part II studies the influence of transverse magnetic fields on the arc column for ambient pressures of 0.1-5.0 MPa. If exposed to a magnetic induction of several millitesla, the column of an arc is deflected by the Lorentz forces. In this paper, heat transfer and fluid flow with coupled electromagnetic forces are modeled for the magnetically deflected arc. To verify the predictions, the three-dimensional temperature distributions of the arc column are determined by line and continuum radiation measurements using tomographic methods. These temperature maps are compared with the results of the numerical simulations. To gain insight into the physical professes of the discharge and to make the arc properties available which are not readily measured, a self-consistent numerical model of the arc column is applied to the time-dependent and three-dimensional case. The temperature, velocity, pressure, and current densities are predicted by solving the conservation equations for mass, momentum, and energy, and Ohm's and Biot-Savart's law using material functions of the plasma. A control volume approach facilitates a numerically conservative scheme for solving the coupled partial differential equations. The predictions are in fair agreement with experimental results. A time-dependent fully implicit simulation of the arc was used to investigate the arc instabilities for large magnetic inductions  相似文献   

9.
双面电弧焊接的传热模型   总被引:4,自引:0,他引:4       下载免费PDF全文
将等离子焊接(PAW)电弧和钨极氩弧焊(TIG)电弧串接,相对作用于工件的正反面形成双面电弧焊接(DSAW)系统,可以引导焊接电流沿工件厚度方向流过小孔,补偿等离子电弧穿透工件时消耗的能量,以有效地提高等离子弧的穿透能力.综合考虑影响双面电弧焊接正反面熔池几何形状的力学因素,建立了熔池表面变形的控制方程,以此为基础并采用帖体曲线坐标系建立了DSAW焊接传热的数学模型,分析了DSAW,PAW焊接传热的差异,从传热的角度解释了DSAW焊接熔深增加的原因.焊接工艺实验表明,计算结果与实测结果吻合良好. 关键词: 双面电弧焊接(DSAW) 传热模型 熔池表面变形模型  相似文献   

10.
刘宗凯  周本谋  刘会星  刘志刚  黄翼飞 《物理学报》2011,60(8):84701-084701
电磁流体表面推进是在推进单元周围的导电流体中(海水、等离子体等)激励出电磁体积力,并利用电磁体积力的反作用力达到推进的目的. 基于电磁场和流体力学的基本控制方程,采用有限体积法对电磁流体表面推进的效果进行了数值模拟研究,分析了在不同姿态(攻角)和不同电磁体积力的作用下,航行器周围流场结构的变化规律和推力的变化特点.研究结果表明:沿航行器表面分布的电磁体积力可以有效地改变流体边界层的结构,并能向流体边界层传输动量与能量,从而使航行器获得所需的推力.流体对航行器的黏性阻力和压差阻力的影响随作用参数的增大而减弱 关键词: 表面推进 航行器 推进单元 电磁体积力  相似文献   

11.
电磁力及其对MIG焊接熔池流场的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
孙俊生  武传松 《物理学报》2001,50(2):209-216
MIG焊接熔池具有不规则的表面边界,温度较高且分布极不均匀,在电磁力、浮力、表面张力等的作用下发生剧烈运动.基于熔池表面变形较大时电弧电流密度的双峰分布模型,建立了电磁力的计算模型.采用数值模拟技术研究了熔池中的流体力学行为,揭示了焊接工艺参数对熔池流场的影响规律.实验表明,计算与实测结果符合良好.  相似文献   

12.
电磁力及其对MIG焊接熔池流场的影响   总被引:8,自引:1,他引:7       下载免费PDF全文
孙俊生  武传松 《物理学报》2001,50(2):209-216
MIG焊接熔池具有不规则的表面边界,温度较高且分布极不均匀,在电磁力、浮力、表面张力等的作用下发生剧烈运动.基于熔池表面变形较大时电弧电流密度的双峰分布模型,建立了电磁力的计算模型.采用数值模拟技术研究了熔池中的流体力学行为,揭示了焊接工艺参数对熔池流场的影响规律.实验表明,计算与实测结果符合良好.  相似文献   

13.
The thermocapillary flow of a metal melt in a rectangular pool driven by an electronic beam is numerically simulated neglecting the gravitational forces for the2-D problem formulation. The flow is created by the surface tension gradient at the free surface dependent on the temperature. It is shown that in a pool with a 1∶1 depth-to-width ratio secondary cells develop, whereas in the shallow pool they are absent. Tomsk State University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 113–118, March, 1999.  相似文献   

14.
樊丁  黄自成  黄健康  王新鑫  黄勇 《物理学报》2015,64(10):108102-108102
基于局域热平衡状态假设并考虑金属蒸汽的作用, 建立了钨极惰性气体保护焊电弧与熔池交互作用的三维数学模型. 电弧等离子体的热力学参数和输运系数由温度和金属蒸汽浓度共同决定, 并使用第二黏度近似简化处理金属蒸汽在氩等离子中的输运过程. 在考虑熔池流动时, 主要考虑了浮力、电磁力、表面张力和等离子流拉力的作用. 通过对麦克斯韦方程组、连续性方程、动量守恒方程、能量守恒方程和组分输运方程的耦合求解, 得到了金属蒸汽在电弧中的空间分布、电弧和熔池的温度场、速度场和电流密度分布等重要结果. 通过与未考虑金属蒸汽的结果对比, 研究了熔池上表面产生的金属蒸汽对电弧等离子体行为的影响, 以及电弧等离子对熔池行为的影响. 结果表明, 金属蒸汽主要富集在熔池上表面附近; 金属蒸汽对电弧等离子体有明显的收缩作用, 而对等离子速度和电势影响较小; 金属蒸汽的出现对熔池上表面速度分布和剪切力分布以及熔池形貌并无明显影响. 求解结果与已有的实验结果和计算结果符合良好.  相似文献   

15.
The scaling-down of plasma spray torches is connected with problems of anodic arc attachment fluctuations. It Is known that thermally constricted arcs in molecular gases generate unstable anodic arc roots in the nozzle of the torch. Moreover, using a usual plasma spray torch at reduced electrical power level in an argon-hydrogen gas mixture at a pressure of about 120 mbar, the arc is strongly influenced by hydrodynamic forces. Especially, its long time behavior shown by the arc voltage course is very variable and nonreproducible. It is the purpose of this work to optimize the nozzle geometry and the gas flow rate in order to obtain stabilized operating conditions of the plasma torch for an arc current of 100 A. It will be shown that the design of the entrance region and the diameter of the anodic nozzle influence the are column motion as well as the level and the frequency of the voltage fluctuations. With a particularly modified anodic nozzle, stable and reproducible operating conditions of the plasma torch, which is used to synthesize diamond layers, will be obtained  相似文献   

16.
The flow field developed in the laser produced melt pool is investigated and the influence of the Marangoni effect on temperature field is examined. The experiment is carried out to trace the solidified melt pool geometry and the heating is simulated in line with the experimental conditions to predict the melt size in the irradiated region. In the simulations, the control volume approach is used incorporating the Marangoni effect. The enthalpy-porosity method is adopted to account for the phase change in the irradiated region. The study is extended to include the influence of the laser intensity parameter (β) on temperature and the flow field in the melt pool. It is found that the melt pool geometry and the flow field in the melt pool is influenced by the laser intensity parameter. In this case, the number of circulation cell formed in the melt pool is doubled for the intensity parameter 0.4≤β≤0.6. The predictions of the melt pool geometry agree well with the experimental data.  相似文献   

17.
A non-stationary three-dimensional mathematical model of the electric arc of constant current in the approximation of a partial local thermodynamic equilibrium of plasma is presented. For the purpose of testing the model and computer code a computation of the isothermal laminar viscous fluid flow past a circular cylinder (the testing of the dynamic part of the system of equations) and a computation of the axisymmetric electric arc with a reduced anode attachment have been done. A fair agreement of numerical results with experimental data points overall to the correctness of the mathematical model and the numerical solution technique.  相似文献   

18.
超声复合电弧声调控特性研究   总被引:3,自引:2,他引:1       下载免费PDF全文
谢伟峰  范成磊  杨春利  林三宝  张玉岐 《物理学报》2015,64(9):95201-095201
超声复合电弧作为一种新的焊接热源, 在电弧焊接过程中可利用超声实现对熔融金属的深度处理, 但是超声与电弧等离子体间相互作用机理还不清晰, 这成为阻碍该技术工程应用的关键问题. 本文通过实验与相应理论针对外加超声场对焊接电弧调控特性进行了研究. 为说明电弧特性, 针对试验中高速摄像采集的电弧图片进行了处理. 对比未加超声情况, 超声复合电弧受内外声场共同作用等离子体拘束程度明显提高, 电弧亮度增强, 弧柱高温区范围扩展至阳极, 中间粒子出现团聚并以一定频率上下抖动. 通过改变超声激励电流大小和声发射端高度, 电弧结构产生显著变化, 在谐振点附近, 电弧挺直度最强, 脉动频率最大. 试验结果显示通过外加超声可以达到对焊接电弧热等离子体调控的目的. 最后结合波动方程和二维声边界元模型, 分析了电弧内部声传播过程以及声场结构对等离子体粒子的作用规律, 这为进一步理解超声对电弧的调控机理打下良好基础.  相似文献   

19.
A low-density plasma flow in a vacuum arc with a small anode, which intercepts only part of the cathodic plasma jet, was studied theoretically using a two-dimensional approximation. The plasma expansion was modeled using the sourceless steady-state hydrodynamic equations, where the free boundary of the plasma was determined by a self-consistent solution of the gasdynamic and electrical current equations. Magnetic forces from the azimuthal self-magnetic field were taken into account. The influence of the ratio of the anode radius to initial plasma jet radius on the plasma density, velocity, current distribution, and anode sheath potential drop is analyzed. It is shown that the mass and current flow in a 500 A arc are compressed near the axis. This leads to an increase in the plasma density by a factor of two and in the axial current density by a factor of 1.5  相似文献   

20.
One of the inherent problems associated with laser metal deposition using gas-assisted powder transfer is the formation of porosity, which can be detrimental to the mechanical properties of the bulk material. In this work, a comprehensive investigation of porosity is carried out using gas atomised Inconel 718 powder. In the analysis, a clear distinction is made between two types of porosity; namely lack of fusion and gas porosity. The results show that the two types of porosity are attributed by different factors. The gas porosity, which is more difficult to eliminate than the lack of fusion, can be as high as 0.7%. The study shows that the gas porosity is dependent on the process parameters and the melt pool dynamics. The flotation of entrapped gas bubbles was analysed, showing that in a stationary melt pool the gas would be retained by Marangoni-driven flow. The overall Marangoni-driven flow of the melt pool is in the order of five times higher than the flotation effect, and this is the reason why the melt pool geometry would tend to dominate the flow direction of the gas bubbles. Through optimisation, the gas porosity can be reduced to 0.037%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号