首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 714 毫秒
1.
Liquid chromatography (LC) with cavity ring-down spectroscopy (CRDS) detection, using flow cuvettes (put under normal incidence inside the ring-down cavity), is demonstrated. Fresnel reflections are maintained within the capture range of a stable cavity of 4 cm length. This method circumvents the need for specific Brewster's angles and possible mirror degradation is avoided. The flow cuvettes are commercially available at low cost. At 355 nm (the frequency-tripled output of a Nd:YAG laser), the system surpasses the performance of conventional absorbance detectors; the baseline noise was 1.3 x 10(-5)AU and detection limits (injected concentrations) were between 40 and 80 nM for nitro-polyaromatic hydrocarbons with an extinction coefficient epsilon of 7.3-10.2 x 10(3)M(-1)cm(-1). The system was also tested at 273 nm, but in the deep UV the reflectivity of the currently best available mirrors (R>or=99.91%) is still too low to show a significant improvement as compared to conventional UV-vis detection.  相似文献   

2.
Liu H  Dasgupta PK  Zheng HJ 《Talanta》1993,40(9):1331-1338
Optical absorption detection is the most common analytical measurement principle in liquid phase analysis. The current state-of-the-art of commercially available detectors exhibit peak-to-peak (p-p) noise levels in the range of 1 x 10(-5)-2 x 10(-5) absorbance units (10-20 microAU). Using circuitry based on newly available switched integrator integrated circuit (IC) packages, it is possible to construct inexpensive absorbance detectors with p-p noise levels as low as 3 microAU under actual use conditions. The necessary electronics are described and performance data are reported with light emitting diodes (LEDs) as light sources. Even in the capillary format with a rectangular capillary (50 x 1000 microm cross section) with a slitwidth <50 microm and with the 1000 microm dimension as the nominal pathlength, p-p noise levels of 10 microAU are observed, from which a concentration limit of detection (LOD) of 10 nM for bromothymol blue (BTB) can be estimated with a 660 nm light source.  相似文献   

3.
Most UV detectors used in micro separation techniques today suffer from an enormous loss in sensitivity due to the small cell volume necessary to avoid peak dispersion. Flow cells with volumes between 10-100 nl are normally constructed of fused silica tubing. With typical path lengths of between 50-320 μm, a tremendous loss in sensitivity results, consistent with Beer-Lambert's law. We have successfully constructed an ultrasensitive UV flow cell. Its total volume does not exceed 90 nl and yet its optical path length is nearly 2 cm (20,000 μm). Due to its special design, dead volume is minimized and is comparable to that of a 3 nl capillary flow cell (on-column). Sensitivity enhancement of 100-500 times can easily be realized in comparison with on-column detection. The potential of this ultra-sensitive UV flow cell in micro separations is illustrated by applications using Capillary LC and Pakked Capillary SFC.  相似文献   

4.
A thermal lens microscope (TLM) detection of capillary electrophoresis (CE) utilizing microchip technology was developed. Fused-silica capillaries with an inner diameter of 50 microm were directly connected to a microchannel in a microchip. The detection limit by TLM was estimated as 2.8 x 10(-7) absorbance by measuring pure water. The detection limit of derivatized amino acids determined by CE-TLM was estimated as 2.4 x 10(-8) M, which was 100 times lower than that of conventional absorbance detection.  相似文献   

5.
This is an initial report to propose a novel approach in high-performance capillary electrophoresis (HPCE) for the direct detection of compounds without natural absorbance in the UV and visible spectral range, such as amino acids and carbohydrates. A refractometry detector with the 2 nl cell (Applied Systems, Minsk, Belarus) was employed to identify amino acids and carbohydrates without derivatization. The first results are provided on separation of seven free amino acids in the phosphate running buffer and three free carbohydrates in the borate-sodium dodecyl sulfate running buffer and detection by refractometer. Fused capillaries of 50 or 75 microm internal diameter and separation voltage (10-23 kV) were applied. Detection limits ranged typically from 10 to 100 fmol and the response was linear over two orders of magnitude for most of the amino acids and carbohydrates. The HPCE system demonstrated good long-term stability and reproducibility with a relative standard deviation, less than 5% for the migration time (n=10).  相似文献   

6.
A method is described for the determination of fosfomycin in pus by capillary zone electrophoresis with reversed electroosmotic flow, and indirect UV absorbance detection. Sample pre-treatment is limited to removal of proteins and cell debris by adding the double volume of methanol, followed by vortexing for few seconds, and centrifugation at 15,000 x g for 2 min. The supernatant is directly injected into the instrument. Fosfomycin is separated from sample constituents with a background electrolyte at pH 7.25 (25 mM benzoate buffer with 0.5 mM hexadecyltrimethylammonium bromide added, adjusted to pH with tris(hydroxymethyl)-aminomethane (TRIS)). Separation is carried out in a capillary with 50 microm I.D., 64.5 cm total length, 56.0 cm to the detector, at 25 degrees C with -25 kV voltage applied. Due to the low absorbance of the analyte, indirect UV detection was performed at 254 nm using a bubble cell capillary. Sample was injected by pressure (450 mbar s). Repeatability for fosfomycin in spiked pus (from 8 or 10 consecutive injections of three different series at concentrations of 100 microg/mL of the antibiotic) was between 2.4 and 8.2% relative standard deviation (RSD). Accuracy (expressed as recovery of fosfomycin determined by three independent analysis at 10, 100 and 300 microg/mL fosfomycin added to plain pus) was between 75 and 102%. Intermediate reproducibility (n = 9 at three different days) was between 2 and 12% RSD. Limit of detection and limit of quantitation were 4.5 and 15 microg/mL, respectively. The concentration of fosfomycin in pus of patients treated with the antibiotic ranged up to 240 microg/mL. The concentration of other anionic pus constituents identified beside chloride (acetate, succinate, lactate, phosphate) ranged between 20 and 7800 microg/mL.  相似文献   

7.
Yeh CF  Jiang SJ 《The Analyst》2002,127(10):1324-1327
A preliminary study of a modified microconcentric nebulizer (CEI-100, CETAC) as the sample introduction device of capillary electrophoresis inductively coupled plasma mass spectrometry (CE-ICP-MS) for the determination of monophosphate nucleotides is described. The monophosphate nucleotides studied include adenosine 5'-monophosphate (AMP), guanosine 5'-monophosphate (GMP), uridine 5'-monophosphate (UMP) and inosine 5'-monophosphate (IMP). The species studied were well separated using a 70 cm length x 75 microm id fused silica capillary while the applied voltage was set at -22 kV and a 20 mmol l(-1) ammonium citrate/citric acid buffer (pH 4.0) containing 0.1% m/v cationic polymer (hexadimethrine bromide, Polybrene) was used as the electrophoretic buffer. The electroosmotic flow was reversed by flushing the fused silica capillary with 0.2% m/v Polybrene to accelerate separation. The detection limit of various species studied was in the range of 0.036-0.054 microg P ml(-1), which corresponded to the absolute detection limit of 1.1-1.6 pg P based on the injection volume of 30 nl. We determined the concentrations of nucleotides in two IG-enriched monosodium glutamates purchased from the local market. The recovery was in the range of 100-112% for various species, and the concentrations of IMP and GMP in these samples were in the range of 0.15-0.18% m/m.  相似文献   

8.
A capillary electrophoresis method with ultraviolet (UV) detection was developed and optimized for the enantiomer separation of norepinephrine (NE), epinephrine (EP) and isoprenaline (IP) using dual cyclodextrins (CDs) of 2-hydroxypropyl-beta-CD (HP-beta-CD) and heptakis (2,6-di-o-methyl)-beta-CD (DM-beta-CD) as chiral selectors. Optimal separation was obtained using a running buffer of 50mM phosphate containing 30mM HP-beta-CD and 5mM DM-beta-CD at pH 2.90 and a field strength of 20kV in 45cmx75mum (40cm effective length) uncoated capillary. The UV absorbance detection was set at 205nm. A 0.1% (w/w) polyethylene glycol or 0.1% (v/v) acetonitrile was used to enhance the detection sensitivity. There was a wide and excellent linear calibration graph for each enantiomer in the range 1.0x10(-3) to 1.0x10(-6)M and the detection limit (S/N=3) was found from 8.5x10(-7) to 9.5x10(-7)M. The method has been applied for the determination of isoprenaline in isoprenaline hydrochloride aerosol and to the analysis of serum samples. The recoveries of NE and EP in serum and IP in drug were ranged from 90 to 110%. The relative standard deviations of all the analyte peaks were less than 2.8% for migration time and less than 4.8% for peak area.  相似文献   

9.
A robust method for the quantification of epinephrine from 15 different commercial dental anesthetic formulations is developed using CE. This work presents an extension to a method reported earlier. The solvability of several anesthetic compounds was improved through appropriate dilutions and the addition of sodium dodecyl sulfate to the separation background electrolyte. By controlling the mobility of the analyte at different pH values, a dilute solution of epinephrine is focused into a sharp zone with the injection of about 150 nl of anesthetic solution into the capillary. This on-column concentration technique extended the concentration detection limit of epinephrine to about 5.0 x 10(-7) M using a commercially available UV detector. A correlation plot between the measured and listed epinephrine concentration for the 15 dental anesthetic solutions demonstrated excellent accuracy of this method.  相似文献   

10.
Ru QH  Luo GA  Wang ZB  Liu JY 《The Analyst》2000,125(11):1924-1927
Based on the separation of 1-palmitoyl-2-(13-hydroperoxy-cis-9,trans-11-octadecadienoyl)-L-3- phosphatidylcholine (PC-OOH) and 1-palmitoyl-2-(13-hydroxy-cis-9,trans-11-octadecadienoyl)-L-3- phosphatidylcholine (PC-OH) and the quantitative determination of PC-OH, the enzymatic activity of phospholipid hydroperoxide glutathione peroxidase (PHGPx) can be measured by capillary electrophoresis. The separation was carried out in a fused-silica capillary (30 cm x 100 microns id) at 15 kV positive voltage. Sodium borate (100 mM; pH = 8.4) was used as the running buffer, and the photodiode array detector wavelength was 232 nm. The determination can be completed in 5 min. The detection limit was 5 pmol; and the relative standard deviation (RSD) of the peak area was less than 1% with an average recovery of 98.6%. Compared with traditional methods such as HPLC and spectrophotometry, it is faster and more convenient. Using capillary electrophoresis, the enzymatic activities of PHGPx expressed by the rice PHGPx gene in E. coli. M15 was determined as 1.25 x 10(-5) mumol min-1, and the specific activity of partially purified trans-gene PHGPx was 3.1 x 10(-2) mumol min-1 per mg. The stability of the trans-gene PHGPx was also studied.  相似文献   

11.
A new capillary electrophoretic (CE) method was developed for the simple and selective determination of sulfite. The proposed method is based on the in-capillary derivatization of sulfite with iodine using the zone-passing technique and direct UV detection of iodide formed. The optimal conditions for the separation and derivatization reaction were established by varying concentration of iodine, electrolyte pH and applied voltage. The optimised separations were carried out in 20 mmol l(-1) Tris-HCl electrolyte (pH 8.5) using direct UV detection at 214 nm. Experimental results showed that the injection of the iodine zone from anodic end of the capillary gives significantly better precision. Common UV absorbing anions such as Br-, l-, S2O3(2-), NO3-, NO2-, SCN- did not give any interferences. Valid calibration (r2=0.998) is demonstrated in the range 1 x 10(-5) - 8 x 10(-4) mol l(-1) of sulfite. The detection limit (SIN=3) was 2 x 10(-6) mol l(-1). The proposed system was applied to the determination of free sulfite in wines. The recovery tests established for wine samples were within the range 92-103%. The CE results were compared with those obtained by iodometric titration technique.  相似文献   

12.
Fast and sensitive packed capillary column switching liquid chromatography methodology has been developed for the determination of the pesticide rotenone in river water. Sample volumes of up to 1 ml are loaded onto a 23 x 0.25 mm, 5 microm Kromasil C18 packed capillary precolumn using a noneluting solvent composition of water-acetonitrile (99:1, v/v) at flow-rates up to 100 microl/min prior to solute backflushing onto a 200 x 0.32 mm, 3.5 microm Kromasil C18 packed capillary analytical column using a mobile phase of water-acetonitrile (30:70, v/v) at a flow-rate of 5 microl/min. The method was evaluated using river water samples spiked with rotenone in the concentration range 0.5-50 ng/ml using UV detection. The within-assay precision was between 5.0 and 7.7% relative standard deviation (RSD, n = 6) and the between assay precision was between 7.5 and 8.9% RSD (n = 6). The method was linear within the investigated mass range displaying a calibration curve correlation factor of 0.997. The mass limit of detection was 10 pg corresponding to a concentration limit of detection of 10 pg/ml, using time-of-flight mass spectrometry.  相似文献   

13.
Felix FS  Brett CM  Angnes L 《Talanta》2008,76(1):128-133
Flow injection analysis (FIA) using a carbon film sensor for amperometric detection was explored for ambroxol analysis in pharmaceutical formulations. The specially designed flow cell designed in the lab generated sharp and reproducible current peaks, with a wide linear dynamic range from 5x10(-7) to 3.5x10(-4) mol L(-1), in 0.1 mol L(-1) sulfuric acid electrolyte, as well as high sensitivity, 0.110 Amol(-1) L cm(-2) at the optimized flow rate. A detection limit of 7.6x10(-8) mol L(-1) and a sampling frequency of 50 determinations per hour were achieved, employing injected volumes of 100 microL and a flow rate of 2.0 mL min(-1). The repeatability, expressed as R.S.D. for successive and alternated injections of 6.0x10(-6) and 6.0x10(-5) mol L(-1) ambroxol solutions, was 3.0 and 1.5%, respectively, without any noticeable memory effect between injections. The proposed method was applied to the analysis of ambroxol in pharmaceutical samples and the results obtained were compared with UV spectrophotometric and acid-base titrimetric methods. Good agreement between the results utilizing the three methods and the labeled values was achieved, corroborating the good performance of the proposed electrochemical methodology for ambroxol analysis.  相似文献   

14.
Glass and PTFE tubes as detection cells were put in small light-tight boxes to achieve miniaturization of batch-and flow-type chemiluminescence detectors for capillary electrophoresis. These light-tight boxes which included a detection cell and a photosensor module were successfully designed. In the batch-type detector using a glass tube as a detection cell, the influences of a repeated injection of sample and a reagent volume of the detection cell on chemiluminescence intensity were examined in detail. By using 3.8 mm I.D. glass tube including 400 microl chemiluminescence reagent solution, the chemiluminescence peaks were reproducibly observed for the repeated injection experiment up to the eight injection with each run time of 3.0 min. Dansyl-Trp was determined over the range 3 x 10(-8)-1 x 10(-5) M with the detection limit of 0.43 fmol (S/N=3). In the flow-type detector using a PTFE tube as a detection cell, both ends of the PTFE tube were connected to three-way joints; a chemiluminescence reagent solution was delivered into the cell and a capillary was inserted through one of the joints while an electrode was inserted through the other one. Dansyl-Trp was determined over the range 1 x 10(-7)-1 x 10(-5) M with the detection limit of 1.3 fmol (S/N=3). By using the compact flow-type detector, a mixture of dansyl-amino acids was separated and detected in micellar electrokinetic chromatography mode.  相似文献   

15.
Chemiluminescence detection was combined with capillary isoelectric focusing to perform protein analysis with high sensitivity. Luminol-H2O2 chemiluminescence was utilized, and heme proteins such as cytochrome c, myoglobin and peroxidase were analyzed. The proteins were focused by use of Pharmalyte 3-10 as ampholytes. Hydroxypropylmethyl-cellulose was added to the sample solution in order to easily reduce protein interactions with the capillary wall as well as the electroendoosmotic flow. The focused proteins were transported by salt mobilization to chemiluminescence detection cell equipped with an optical fiber. The present method showed significantly high sensitivity and wide dynamic range; the detection limit for cytochrome c was 6 x 10(-9) M and the linear dynamic range was greater than two-orders of magnitude (up to 2 x 10(-6) M).  相似文献   

16.
Summary The analysis of carbohydrates has been always hampered by their lack of UV absorbance above 200 nm, which is an especially challenging problem in capillary electrophoresis due to the very small (nl) sample volumes injected. The introduction of 2-aminopyridine as derivatizing agent allows sensitive direct UV detection of saccharides in the fmol range. However, due to the requirement of the presence of a free aldehyde group only aldoses and uronic acids can be determined. This limitation was recently overcome by means of precolumn derivatization withp-aminobenzoic acid or ethylp-aminobenzoate, which permits the analysis of fructose with a lower mass detection limit of 0.3 and 0.14 pmol, respectively. The detection limits for aldoses were even as low as 15 and 7 fmol. A more universal approach is the use of indirect UV detection, which permits the analysis of carbohydrates, including (1–2)-linked disaccharides and aldonic acids, at the lower pmol level without the need for derivatization.Dedicated to Professor Leslie S. Ettre on the occasion of his 70th birthday.  相似文献   

17.
Johns C  Macka M  Haddad PR 《Electrophoresis》2004,25(18-19):3145-3152
Indirect photometric detection in capillary electrophoresis (CE) has been predominantly performed in the UV region, in part due to a lack of suitable high-intensity and low-noise light sources in the visible spectral region. A new photometric detector based on light-emitting diodes (LEDs) as light sources and compatible with a commercially available CE instrument has been designed and constructed and its performance evaluated. The utility of this detector was successfully demonstrated by the indirect photometric detection of anions using a dye as probe and absorbance measured in the visible region. The detector exhibited very low baseline noise (around 0.03 mAU), stable output, and improved upper limit of detection linearity (502 mAU) compared with previously used LED detectors. The detector was tested for indirect detection of anions separated with an electrolyte containing 4 mM Orange G as the indirect detection probe, 10 mM histidine as an isoelectric buffer, and 0.05% hydroxypropylmethylcellulose to suppress the electroosmotic flow. Extremely low detection limits were obtained ranging from 0.16-0.36 microM (excluding chloride 0.56 microM), with separation efficiencies in the range of 154,000-274,000 theoretical plates.  相似文献   

18.
The present work displays capillary liquid chromatographic column switching methodology tailored for determination of benzo[a]pyrene tetrol isomers in biological matrices using on-line fluorescence and micro-electrospray ionization mass spectrometric detection. A well-established off-line crude solid phase extraction procedure was used in order to make the method compatible with several biological matrices. The solid phase extraction eluates were evaporated to dryness, redissolved in 1.0 ml methanol:water (10:90, v/v), loaded onto a 0.32 mm I.D. x 40 mm 5 microm Kromasil C(18) pre-column for analyte enrichment and back-flushed elution onto a 0.30 mm I.D. x 150 mm 3.5 microm Kromasil C(18) analytical column. The samples were loaded with a flow rate of 50 microl min(-1) and the tetrols were separated at a flow rate of 4 microl min(-1) with an acetonitrile:10 mM ammonium acetate gradient from 10 to 90%. A sample loading flow rate up to 50 microl min(-1) was allowed. The fluorescence excitation and emission were set to 342 and 385 nm, respectively, while mass spectrometric detection of the benzo[a]pyrene tetrols was obtained by monitoring their [M - H](-) molecular ions at m/z 319. The method was validated over the concentration range 0.1-50 ng ml(-1) benzo[a]pyrene tetrols in a cell culture medium with 100 microl injection volume, fluorescence detection and the first eluting tetrol isomer as model compound, resulting in a correlation coefficient of 0.993. The within-assay (n= 6) and between-assay (n= 6) precisions were determined to 2.6-8.6% and 3.8-9.6%, respectively, and the recoveries were determined to 97.9-102.4% within the investigated concentration range. The mass limit of detection (by fluorescence) was 3 pg for all the tetrol isomers, corresponding to a concentration limit of detection of 30 pg ml(-1) cell culture medium. The corresponding mass spectrometric mass limits of detection were 4-10 pg, corresponding to concentration limits of detection of 40-100 pg ml(-1) cell culture medium.  相似文献   

19.
The quantitative effects on chromatographic resolution of FTIR flow-cells for detection in capillary SFC have been determined. A suitably designed cell with a volume of 500 nl was shown to cause only modest broadening of chromatographic peaks obtained from the surfactant mixture Triton X-100, showing that subsequent detection methods can therefore be used in a multi-hyphenated chromatographic ensemble. A larger-volume (980 nl) cell was found to give satisfactory results with 100 μ columns, but not with 50 μm columns. The practicability of a multi-hyphenated system was illustrated by a preliminary capillary SFC-UV-FTIR-FID study on a plant extract. Good infrared spectra were obtained, together with well-resolved UV and (subsequent) FID chromatograms.  相似文献   

20.
A rapid, simple, and accurate spectrophotometric method is presented for the determination of fluoxetine by batch and flow injection analysis methods. The method is based on fluoxetine competitive complexation reaction with phenolphthalein-beta-cyclodextrin (PHP-beta-CD) inclusion complex. The increase in the absorbance of the solution at 554 nm by the addition of fluoxetine was measured. The formation constant for fluoxetin-beta-CD was calculated by non-linear least squares fitting. Fluoxetine can be determined in the range 7.0 x 10(-6)-2.4 x 10(-4) mol l(-1) and 5.0 x 10(-5)-1.0 x 10(-2) mol l(-1) by batch and flow methods, respectively. The limit of detection and limit of quantification were respectively 4.13 x 10(-6) mol l(-1) and 1.38 x 10(-5) mol l(-1) for batch and 2.46 x 10(-5) mol l(-1) and 8.22 x 10(-5) mol l(-1) for flow method. The sampling rate in flow injection analysis method was 80+/-5 samples h(-1). The method was applied to the determination of fluoxetine in pharmaceutical formulations and after addition to human urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号