首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative kinetic resolution of racemic secondary alcohols by using acetone as a hydrogen acceptor in the presence of a catalytic amount of [RuCl(2)(PPh(3))(ferrocenyloxazolinylphosphine)] (2) proceeds effectively to recover the corresponding alcohols in high yields with an excellent enantioselectivity. When 1-indanol is employed as a racemic alcohol, the oxidation proceeds quite smoothly even in the presence of 0.0025 mol % of the catalyst 2 to give an optically active 1-indanol in good yield with high enantioselectivity (up to 94% ee), where turnover frequency (TOF) exceeds 80,000 h(-1). From a practical viewpoint, the kinetic resolution is investigated in a large scale, optically pure (S)-1-indanol (75 g, 56% yield, >99% ee) being obtained from racemic 1-indanol (134 g) by employing this kinetic resolution method twice.  相似文献   

2.
Hydrogen transfer reduction of α-sulfonylaldehydes using HCOOH-Et3N system as hydrogen source and (S,S)-TsDPEN-based Ru(II) as catalyst proceeds with dynamic kinetic resolution, providing optically active β-sulfonyl primary alcohols in moderate-to-good yields and up to 90% ee.  相似文献   

3.
The highly enantioselective borohydride reduction of aromatic ketones or imines to the corresponding alcohols was developed in the presence of a catalytic amount of an optically active cobalt(II) complex catalyst. This enantioselective reduction is carried out using a precisely premodified borohydride with alcohols such as tetrahydrofurfuryl alcohol, ethanol and methanol. High optical yields are obtained by choosing the appropriate alcohol as modifiers and a suitable beta-ketoiminato ligand of the catalyst. The enantioselective borohydride reduction has been successfully applied to the preparation of optically active 1,3-diols, the stereoselective reduction of diacylferrocenes, and dynamic and/or kinetic resolution of 1,3-dicarbonyl compounds.  相似文献   

4.
Reduction of allylic alcohols can be promoted efficiently by the supported ruthenium catalyst Ru(OH)x/Al2O3. Various allylic alcohols were converted to saturated alcohols in excellent yields by using 2-propanol without any additives. This Ru(OH)x/Al2O3-catalyzed reduction of a dienol proceeds only at the allylic double bond to afford the corresponding enol, and chemoselective isomerization and reduction can be realized under similar conditions. The catalysis is truly heterogeneous and the high catalytic performance can be maintained during at least three recycles of the Ru(OH)x/Al2O3 catalyst. The transformation of allylic alcohols to saturated alcohols consists of three sequential reactions: oxidation of allylic alcohols to alpha,beta-unsaturated carbonyl compounds; reduction of alpha,beta-unsaturated carbonyl compounds to saturated carbonyl compounds; and reduction of saturated carbonyl compounds to saturated alcohols.  相似文献   

5.
A novel continuous-flow scCO(2) process for kinetic resolution of racemic alcohols can be performed with an immobilized lipase to lead to a quantitative mixture of the corresponding optically active acetates with up to 99% ee and unreacted alcohols with up to 99% ee, in which the productivity of the optically active compounds was improved by over 400 times compared to the corresponding batch reaction using scCO(2).  相似文献   

6.
Metal-catalyzed asymmetric transfer hydrogenation is a powerful and practical method for the reduction of ketones to produce the corresponding secondary alcohols, which are valuable building blocks in the pharmaceutical, perfume, and agrochemical industries. Hence, a series of novel chiral β-amino alcohols were synthesized by chiral amines with regioselective ring opening of (S)-propylene oxide or reaction with (S)-(+)-2-hydroxypropyl p-toluenesulfonate by a straightforward method. The chiral ruthenium catalytic systems generated from [Ru(arene)(μ-Cl)Cl]2 complexes and chiral phosphinite ligands based on amino alcohol derivatives were employed in asymmetric transfer hydrogenation of ketones to give the corresponding optically active alcohols; (2S)-1-{[(2S)-2-[(diphenylphosphanyl)oxy]propyl][(1R)-1-phenylethyl]amino}propan-2-yldiphenylphosphinitobis[dichol-oro(η6-benzene)ruthenium(II)] acts an excellent catalyst in the reduction of α-naphthyl methyl ketone, giving the corresponding alcohol with up to 99% ee. The substituents on the backbone of the ligands were found to have a remarkable effect on both the conversion and enantioselectivity of the catalysts. Furthermore, this transfer hydrogenation is characterized by low reversibility under these conditions.  相似文献   

7.
[reaction: see text] The complex [Ru(tpy)(pydic)] (1a) is an active catalyst for epoxidation of alkenes by aqueous 30% hydrogen peroxide in tertiary alcohols. The protocol is simple to operate and gives the corresponding epoxides in good to excellent yields. Chiral enantiopure [Ru(tpy)(pydic)] complexes have been synthesized and successfully applied in this procedure.  相似文献   

8.
《Tetrahedron: Asymmetry》2003,14(7):823-836
Intramolecular cyclopropanation of alkenyl α-diazoacetates and alkenyl diazomethyl ketones was examined by using optically active (ON+)Ru(II)(salen) and Co(II)(salen) complexes as catalysts. For the cyclization of 2-alkenyl α-diazoacetates, Co(II)(salen) complexes 9 and 10 were found to be superior catalysts to the corresponding (ON+)Ru(II)(salen) complexes 4 and 5. On the other hand, (ON+)Ru(II)(salen) complex 2 was found to be the catalyst of choice for the cyclization of 3-alkenyl diazomethyl ketones, and complex 4 was found to be a good catalyst for the cyclization of (E)-4-alkenyl diazomethyl ketones. The present study demonstrates that metallosalen complexes, especially optically active (ON+)Ru(II)(salen) and Co(II)(salen) complexes, can serve as efficient catalysts for the cyclization of alkenyl diazocarbonyl compounds, if a suitable salen ligand is used as the chiral auxiliary.  相似文献   

9.
The combination of RuCl2(PPh3)3 and TEMPO affords an efficient catalytic system for the aerobic oxidation of a variety of primary and secondary alcohols, giving the corresponding aldehydes and ketones, in >99% selectivity in all cases. The Ru/TEMPO system displayed a preference for primary vs secondary alcohols. Results from Hammett correlation studies (rho = -0.58) and the primary kinetic isotope effect (kH/kD = 5.1) for the catalytic aerobic benzyl alcohol oxidations are inconsistent with either an oxoruthenium (O=Ru) or an oxoammonium based mechanism. We postulate a hydridometal mechanism, involving a "RuH2(PPh3)3" species as the active catalyst. TEMPO acts as a hydrogen transfer mediator and is either regenerated by oxygen, under catalytic aerobic conditions, or converted to TEMPH under stoichiometric anaerobic conditions.  相似文献   

10.
Highly enantioselective alkylation of protected glycine diphenylmethyl (Dpm) amide 1 and Weinreb amide 10 has been realized under phase-transfer conditions by the successful utilization of designer chiral quaternary ammonium salts of type 4 as catalyst. Particularly, remarkable reactivity of the chiral ammonium enolate derived from 1b and 4c allowed the reaction with less reactive simple secondary alkyl halides with high efficiency and enantioselectivity. An additional unique feature of this chiral ammonium enolate is its ability to recognize the chirality of beta-branched primary alkyl halides, which provides impressive levels of kinetic resolution and double stereodifferentiation during the alkylation, allowing for two alpha- and gamma-stereocenters to be controlled. Combined with the subsequent reduction using LiAlH4 in cyclopentyl methyl ether (CPME), this system offers a facile access to structurally diverse optically active vicinal diamines. Furthermore, the optically active alpha-amino acid Weinreb amide 11 can be efficiently converted to the corresponding amino ketone by a simple treatment with Grignard reagents. In addition, reduction and alkylation of the optically active alpha-amino ketone into both syn and anti alpha-amino alcohols with almost complete relative and absolute stereochemical control have been achieved. With (S,S)- and (R,R)-4 in hand, the present approach renders both enantiomers of alpha-amino amides including Weinreb amides readily available with enormous structural variation and also establishes a general and practical route to vicinal diamines, alpha-amino ketones, and alpha-amino alcohols with the desired stereochemistry.  相似文献   

11.
Three kinds of hydrogen-transfer reactions, namely racemization of chiral secondary alcohols, reduction of carbonyl compounds to alcohols using 2-propanol as a hydrogen donor, and isomerization of allylic alcohols to saturated ketones, are efficiently promoted by the easily prepared and inexpensive supported ruthenium catalyst Ru(OH)x/Al2O3. A wide variety of substrates, such as aromatic, aliphatic, and heterocyclic alcohols or carbonyl compounds, can be converted into the desired products, under anaerobic conditions, in moderate to excellent yields and without the need for additives such as bases. A larger scale, solvent-free reaction is also demonstrated: the isomerization of 1-octen-3-ol with a substrate/catalyst ratio of 20,000/1 shows a very high turnover frequency (TOF) of 18,400 h(-1), with a turnover number (TON) that reaches 17,200. The catalysis for these reactions is intrinsically heterogeneous in nature, and the Ru(OH)x/Al2O3 recovered after the reactions can be reused without appreciable loss of catalytic performance. The reaction mechanism of the present Ru(OH)x/Al2O3-catalyzed hydrogen-transfer reactions were examined with monodeuterated substrates. After the racemization of (S)-1-deuterio-1-phenylethanol in the presence of acetophenone was complete, the deuterium content at the alpha-position of the corresponding racemic alcohol was 91%, whereas no deuterium was incorporated into the alpha-position during the racemization of (S)-1-phenylethanol-OD. These results show that direct carbon-to-carbon hydrogen transfer occurs via a metal monohydride for the racemization of chiral secondary alcohols and reduction of carbonyl compounds to alcohols. For the isomerization, the alpha-deuterium of 3-deuterio-1-octen-3-ol was selectively relocated at the beta-position of the corresponding ketones (99% D at the beta-position), suggesting the involvement of a 1,4-addition of ruthenium monohydride species to the alpha,beta-unsaturated ketone intermediate. The ruthenium monohydride species and the alpha,beta-unsaturated ketone would be formed through alcoholate formation/beta-elimination. Kinetic studies and kinetic isotope effects show that the Ru-H bond cleavage (hydride transfer) is included in the rate-determining step.  相似文献   

12.
In the present study, a series of chiral C2‐symmetric ferrocenyl based binuclear η6‐benzene‐Ru(II) complexes bearing diphenylphosphinite and diisopropylphosphinite moieties have been synthesised. The new binuclear η6‐benzene‐Ru(II)‐phosphinite complexes were characterised based on nuclear magnetic resonance (1H, 13C, 31P–NMR), FT‐IR spectroscopy and elemental analysis. Then, these complexes have been screened as catalytic precursors in the transfer hydrogenation of acetophenone with 2‐propanol as both the hydrogen source and solvent in the presence of KOH. The corresponding optically active secondary alcohols were obtained in excellent conversion rates between 96 and 99% and moderate to good enantioselectivities (up to 78% ee). The complex 5 was the most efficient catalyst among the four new complexes investigated herein.  相似文献   

13.
Aminocyclopentadienyl ruthenium complexes, which can be used as room-temperature racemization catalysts with lipases in the dynamic kinetic resolution (DKR) of secondary alcohols, were synthesized from cyclopenta-2,4-dienimines, Ru(3)(CO)(12), and CHCl(3): [2,3,4,5-Ph(4)(eta(5)-C(4)CNHR)]Ru(CO)(2)Cl (4: R = i-Pr; 5: R = n-Pr; 6: R = t-Bu), [2,5-Me(2)-3,4-Ph(2)(eta(5)-C(4)CNHR)]Ru(CO)(2)Cl (7: R = i-Pr; 8: R = Ph), and [2,3,4,5-Ph(4)(eta(5)-C(4)CNHAr)]Ru(CO)(2)Cl (9: Ar = p-NO(2)C(6)H(4); 10: Ar = p-ClC(6)H(4); 11: Ar = Ph; 12: Ar = p-OMeC(6)H(4); 13: Ar = p-NMe(2)C(6)H(4)). The tests in the racemization of (S)-4-phenyl-2-butanol showed that 7 is the most active catalyst, although the difference decreased in the DKR. Complex 4 was used in the DKR of various alcohols; at room temperature, not only simple alcohols but also functionalized ones such as allylic alcohols, alkynyl alcohols, diols, hydroxyl esters, and chlorohydrins were successfully transformed to chiral acetates. In mechanistic studies for the catalytic racemization, ruthenium hydride 14 appeared to be a key species. It was the major organometallic species in the racemization of (S)-1-phenylethanol with 4 and potassium tert-butoxide. In a separate experiment, (S)-1-phenylethanol was racemized catalytically by 14 in the presence of acetophenone.  相似文献   

14.
Aldehydes and ketones were hydrogenated to the corresponding alcohols, which were then transformed in situ into their respective iodides and nitriles in good yields. A structurally well-defined O-containing transition metal complex, Ru (TMHD)3, was found to be the active catalyst for hydrogenation, iodination and cyanation reactions. It has high affinity for the transformation of benzylic alcohols to iodides and nitriles.  相似文献   

15.
This paper describes the preparation of two new optically active aliphatic β‐amino alcohols (R)‐5,5‐dimethyl‐2–(dimethylamino)‐1, 1‐diphenyl‐1‐bersanol (la) and (S)‐8,8‐dimethyl‐2–(dimethylamino)‐1, 1‐diphenyl‐1‐nonanol (1b). They were synthesized by methylation of the corresponding β‐amino alcohols 2a and 2b. Compounds 1a and 1b catalyze the addition of diethylzinc to various aldehydes enantioselectivity. The catalyst structure‐enantioselectivity relationships were discussed.  相似文献   

16.
Chiral secondary alcohols are very important building blocks and valuable synthetic intermediates both in organic synthesis and in the pharmaceutical industry for producing biologically active complex molecules. A series of new chiral Ru–phosphinite complexes ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ) were prepared from chiral C2‐symmetric ferrocenyl phosphinites and corresponding chloro complex, [Ru(η6p‐cymene)(μ‐Cl)Cl]2. The complexes were characterized using conventional spectroscopic methods. The binuclear complexes were tested as pre‐catalysts and were found to be good pre‐catalysts for the asymmetric transfer hydrogenation of substituted acetophenones in basic 2‐propanol at 82°C, providing the corresponding optically active alcohols with almost quantitative conversion and modest to high enantioselectivities (46–97%). Amongst the all complexes, complex 6 gave the highest ee of 97% in the reduction of 2‐methoxyacetophenone to (S)‐1‐(2‐methoxyphenyl)ethanol at 82°C. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
通过金属离子替代的方法设计了催化氧化性能不同的Mg-Al-Ru-CO3类水滑石、Co-Al-Ru-CO3类水滑石和Ru-Co(OH)2-CeO2等三种催化剂. XRD实验表明钌部分替换制得的Mg-Al-Ru-CO3和Co-Al-Ru-CO3可保持水滑石的结构; 但用铈替代铝之后得到的Ru-Co(OH)2-CeO2催化剂无法保持水滑石的结构, 而是由氢氧化钴和二氧化铈的微晶组成. XPS 和Ru K-edge XAFS的测试结果证实Mg-Al-Ru-CO3催化剂中钌被等键长的6个氧原子包围, 该催化剂可有效地催化氧化醇类; Co-Al-Ru-CO3催化剂中钌被两种键长不等的6个氧原子包围, 其中短键长的Ru═O是催化氧化性能增强的原因; Ru-Co(OH)2-CeO2催化剂中钌被两种键长不等的5个氧原子包围, 其对于各类醇均有高效的催化氧化性能, 原因归功于配位数少的钌物种.  相似文献   

18.
以2-(二苯基膦)乙基三乙氧基硅烷和正硅酸乙酯为混合硅源, 采用延时共缩聚法经表面活性剂F127自组装合成了二苯基膦(PPh2)修饰的SBA-16纳米介孔分子筛(PPh2-SBA-16), 通过PPh2配体络合Ru(Ⅱ)化合物制备出固载化的Ru(Ⅱ)非均相催化剂(Ru-PPh2-SBA-16), 样品仍然保持了SBA-16的规整孔道结构. 以水相中高烯丙醇异构化反应为探针, 考察了所制备催化剂的催化性能, 发现其对目标产物具有高选择性, 虽然其催化活性略低于对应的均相Ru(Ⅱ)催化剂, 但该催化剂易与产物分离, 且重复使用三次后催化效率基本不变, 活性相与载体结合牢固, 不存在明显的脱落和流失, 因此更适合于工业化应用.  相似文献   

19.
Biocatalytic production of both enantiomers of optically active alcohols with high enantiopurities is of great interest in industry. Alcohol dehydrogenases (ADHs) represent an important class of enzymes that could be used as catalysts to produce optically active alcohols from their corresponding prochiral ketones. This review covers examples of the synthesis of optically active alcohols using ADHs that exhibit anti-Prelog stereopreference. Both wild-type and engineered ADHs that exhibit anti-Prelog stereopreference are highlighted.  相似文献   

20.
A practical method for the synthesis of optically active aromatic epoxides has been developed via the formation of optically active α-chlorinated alcohols and intramolecular etherification. Optically active alcohols with up to 99% ee can be obtained from the asymmetric reduction of aromatic ketones with a substrate/catalyst ratio of 1000-5000 using a formic acid/triethylamine mixture containing a well-defined chiral Rh complex, Cp*RhCl[(R,R)-Tsdpen]. The asymmetric reduction of α-chlorinated aromatic ketones with a chiral Rh catalyst is characterized by a rapid and carbonyl group-selective transformation because of the coordinatively saturated nature of diamine-based Cp*Rh(III) hydride complexes. The outcome of the reduction is significantly influenced by the structures of the ketonic substrates as well as the hydrogen source such as formic acid or 2-propanol. Commercially available reagents and solvents can be used in this reaction without special purification. This epoxide synthetic process in either a one- or two-pot procedure is practical and particularly useful for the large-scale production of optically active styrene oxides from α-chlorinated ketones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号