首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lignin peroxidase (LiP) production cost should be reduced to justify its use in the control of environmental pollution. In this work, we studied the enzyme production by Streptomyces viridosporus T7A using glucose or corn oil as a carbon source having 0.65% yeast extract as a nitrogen source. Enzyme activity, observed using either 0.65% glucose or corn oil at 0.1, 0.5, and 1.0% concentration, was 300, 150, 300, and 200 U/L, respectively. Although higher enzyme activity was obtained in both media containing 0.65% glucose and 0.5% corn oil, the use of corn oil resulted in a better LiP stability. When combined carbon sources were used, higher values of enzyme activity (360, 350, and 225 U/L) were observed in media with 0.65% glucose and supplemented with 0.1, 0.5, and 1.0% corn oil, respectively. Although the presence of both glucose and 0.5% corn oil is favorable for LiP production, satisfactory results in terms of enzyme production and stability could be also observed using 0.5% corn oil as a sole carbon source, which may lead to reduced production costs of the LiP enzyme.  相似文献   

2.
The effect of glucose on xylose-xylitol metabolism in fermentation medium consisting of sugarcane bagasse hydrolysate was evaluated by employing an inoculum of Candida guilliermondii grown in synthetic media containing, as carbon sources, glucose (30 g/L), xylose (30 g/L), or a mixture of glucose (2 g/L) and xylose (30 g/L). The inoculum medium containing glucose promoted a 2.5-fold increase in xylose reductase activity (0.582 IU/mgprot) and a 2-fold increase in xylitol dehydrogenase activity (0.203 IU/mgprot) when compared with an inoculum-grown medium containing only xylose. The improvement in enzyme activities resulted in higher values of xylitol yield (0.56 g/g) and productivity (0.46 g/[L·h]) after 48 h of fermentation.  相似文献   

3.
Bacillus circulans D1 is a good producer of extracellular thermostable xylanase. Xylanase production in different carbon sources was evaluated and the enzyme synthesis was induced by various carbon sources. It was found that d-maltose is the best inducer of the enzyme synthesis (7.05 U/mg dry biomass at 48 h), while d-glucose and d-arabinose lead to the production of basal levels of xylanase. The crude enzyme solution is free of cellulases, even when the microorganism was cultivated in a medium with d-cellobiose. When oat spelt xylan was supplemented with d-glucose, the repressive effect of this sugar on xylanase production was observed at 24 h, only when used at 5.0 g/L, leading to a reduction of 60% on the enzyme production. On the other hand, when the xylan medium was supplemented with d-xylose (3.0 or 5.0 g/L), this effect was more evident (80 and 90% of reduction on the enzyme production, respectively). Unlike that observed in the xylan medium, glucose repressed xylanase production in the maltose medium, leading to a reduction of 55% on the enzyme production at 24 h of cultivation. Xylose, at 1.0 g/L, induced xylanase production on the maltose medium. On this medium, the repressive effect of xylose, at 3.0 or 5.0 g/L, was less expressive when compared to its effect on the xylan medium.  相似文献   

4.
The production of cellulase-free end oxylanase by the thermophilic fungus Thermomyces lanuginosus was investigated insemisolid fermentation and liquid fermentation. Different process variables were investigated in semisolid fermentation, employing corncobas the carbon source. The best results were with the following conditions: grain size=4.5 mm, solid:liquid ratio=1:2, and inoculum size=20% (v/v). Corncob, xylan, and xylose were the best inducers for endoxylanase production. Additionally, organic nitrogen sources were necessary for the production of high endoxylanase activities. The crude enzyme had optimum activity at pH 6.0 and 75°C, displaying a high thermostability. The apparent K 25 and V max were 1.77 mg of xylan/mL and 21.5 U/mg of protein, respectively.  相似文献   

5.
Production of laccase by immobilized cells of Agaricus sp.   总被引:1,自引:0,他引:1  
Laccase was produced in the supernatant of culture of a local isolate of Agaricus sp. obtained from decaying Ficus religiosa wood. The enzyme was produced at a constitutive level when growing the fungus in a nitrogenlimited medium supplemented with either glycerol, glucose, fructose, mannitol, arabinose, maltose, sacch arose, cellulose, or cellobiose. Atwo-to sixfold increase in enzyme specific activity was observed when growing the strain in the presence of straw, xylan, xylose, lignosulfonate, veratryl alcohol, and ferulic and veratric acid. Experimentsare consistent with the existence of an induction control on laccase and the absence of a form of carbon catabolite repression mediated by noninducing carbon sources. Immobilization of the Agaricus sp. on several supports, including polyurethane foam, textilestrips, and straw, resulted in an increase of enzyme production as compared to cultivation in liquid medium.  相似文献   

6.
Cellulase production by the RUT-C30 mutant of the fungusTrichoderma reesei was studied on mixtures of xylose and cellulose. In mixed substrates, the lag phase of the growth cycle was shorter and reached the maximum of total productivity in a shorter time compared to growth on the single substrate, cellulose. A diauxic pattern of utilization of the two carbon sources was observed as well: Xylose was utilized first to support growth, followed by cellulose to induce the cellulase enzyme production and provide an additional carbon source for cellular metabolism. Of the various mixtures of xylose and cellulose used in batch enzyme production, a ratio of 30∶30 g/L of xylose to cellulose was optimal. This mixture produced the highest maximal enzyme productivity of 122 IFPU/L h, and its total productivity reached a maximum value of 55 IFPU/L h in less time than others. However, similar total productivities and higher enzyme titers were observed for growth on cellulose alone.  相似文献   

7.
The white rot fungus Phanerochaete chrysosporium has been identified to be an environmentally useful microorganism for the degradation of various hazardous pollutants, mainly because of its ligninolytic enzyme system, particularly the lignin peroxidase (LiP) secreted by the fungus. In the present work, the behavior of the fungus in liquid medium due to variation in physico-chemical parameters, i.e., glucose concentration, nitrogen concentration, agitation, etc., was studied. Increment of the initial concentration of glucose in the medium increases the biomass growth and LiP activity, when cultured under controlled conditions. The biomass growth and LiP activity by the fungus was modeled following stochastic approach. The behavior of growth and enzyme activity of the fungus observed from the model were found to be in agreement with the experiments qualitatively.  相似文献   

8.
Among the lignocellulosic substrates tested, wheat bran supported a high xylanase (EC 3.2.1.8) secretion by Humicola lanuginosa in solid-state fermentation (SSF). Enzyme production reached a peak in 72 h followed by a decline thereafter. Enzyme production was very high (7832 U/g of dry moldy bran) when wheat bran was moistened with tap water at a substrate-to-moistening agent ratio of 1:2.5 (w/v) and an inoculum level of 3 × 106 spores/10 g of wheat bran at a water activity (a w ) of 0.95. Cultivation of the mold in large enamel trays yielded a xylanase titer comparable with that in flasks. Parametric optimization resulted in a 31% increase in enzyme production in SSF. Xylanase production was approx 23-fold higher in SSF than in submerged fermentation (SmF). A threshold constitutive level of xylanase was secreted by H. lanuginosa in a medium containing glucose as the sole carbon source. The enzyme was induced by xylose and xylan. Enzyme synthesis was repressed beyond 1.0% (w/v) xylose in SmF, whereas it was unaffected up to 3.0% (w/w) in SSF, suggesting a minimization of catabolite repression in SSF.  相似文献   

9.
The gpdA-promoter-controlled exocellular production of glucose oxidase (GOD) by recombinant Aspergillus niger NRRL-3 (GOD3-18) during growth on glucose and nonglucose carbon sources was investigated. Screening of various carbon substrates in shake-flask cultures revealed that exocellular GOD activities were not only obtained on glucose but also during growth on mannose, fructose, and xylose. The performance of A. niger NRRL-3 (GOD3-18) using glucose, fructose, or xylose as carbon substrate was compared in more detail in bioreactor cultures. These studies revealed that gpdA-promoter-controlled GOD synthesis was strictly coupled to cell growth. The gpdA-promoter was most active during growth on glucose. However, the unfavorable rapid GOD-catalyzed transformation of glucose into gluconic acid, a carbon source not supporting further cell growth and GOD production, resulted in low biomass yields and, therefore, reduced the advantageous properties of glucose. The total (endo- and exocellular) specific GOD activities were lowest when growth occurred on fructose (only a third of the activity that was obtained on glucose), whereas utilization of xylose resulted in total specific GOD activities nearly as high as reached during growth on glucose. Also, the portion of GOD excreted into the culture fluid reached similar high levels (≅ 90%) by using either glucose or xylose as substrate, whereas growth on fructose resulted in a more pelleted morphology with more than half the total GOD activity retained in the fungal biomass. Finally, growth on xylose resulted in the highest biomass yield and, consequently, the highest total volumetric GOD activity. These results show that xylose is the most favorable carbon substrate for gpdA-promoter-controlled production of exocellular GOD.  相似文献   

10.
Coproduction of poly-β-hydroxybutyrate (PHB) and exopolysaccharides (EPS) was investigated with Azotobacter chroococcum strain 6B isolated from soil samples. The bacterium was cultured using various carbon sources solely or with 0.1 g/L of ammonium sulfate. Ammonium addition resulted in reduced PHB and EPS production with glucose, fructose, and sucrose media, but cellular mass remained constant except for sucrose. Protein was nearly twofold higher in ammonium-grown cultures. Glucose and fructose alone biosynthesized high amounts of EPS (maximum 2.1 and 1.1 g/L, respectively, at 72 h), whereas PHB was accumulated only in glucose-grown cells. Sucrose almost did not produce EPS. Conversely, PHB content was the highest obtained from all experimented conditions (1.1 g/L at 48 h, 40% cell dry wt). When a complex carbon source such as sugar cane molasses was utilized, PHB was accumulated concomitant with EPS production from the initial time to 48 h (0.75 g/L, 37% cell dry wt and 0.6 g/L, respectively), and then PHB decayed at 72 h (0.2 g/L). On the other hand, EPS continued to be biosynthesized (1.1 g/L, 72 h). PHB fractions of total intra- and extracellular biopolymers were calculated. Sucrose-modified Burk’s medium without ammonium addition is suggested as a medium capable of diverting the carbon source for the production of intracellular PHB rather than EPS with A. chroococcum 6B.  相似文献   

11.
Liu  Huan  Zeng  Liping  Jin  Yuhan  Nie  Kaili  Deng  Li  Wang  Fang 《Applied biochemistry and biotechnology》2019,188(3):741-749

Cellulase is an important enzyme that can be used to breakdown lignocellulose into glucose. Microbulbifer hydrolyticus IRE-31(ATCC 700072) is a kind of marine bacterium, which could grow in high salinity medium and has fast-strong growth ability. In this study, a novel strain was screened from Microbulbifer hydrolyticus IRE-31 through mutations to produce cellulase. The effect of different carbon sources on the growth as well as on the production of cellulase of the new strain was studied. Carboxymethyl-cellulase (CMCase) activity selected to represent cellulase was proven to be effectively promoted while xylose, galactose, and melibiose as well as glucose were used as carbon sources. When xylose and glucose were chosen to be further investigated, 472.57 U/L and 266.01 U/L CMCase activity were obtained from 30 g/L glucose and 10 g/L xylose, respectively. These results clarified the effect of different carbon sources on the production of cellulase, which laid a good foundation for the further research in the production of cellulase by marine bacteria.

  相似文献   

12.
Cultivations of Kluyveromyces marxianus var. bulgaricus ATCC 16045 were performed on both minimal and complex media using different carbon and nitrogen sources either in the presence or absence of aeration. The results collected were worked out and compared so as to provide a useful contribution to the optimization of inulinase production. Kinetics of extracellular inulinase release were similar on glucose, fructose, and sucrose. Inulinase was detected at basal level since the beginning of batch runs on these three carbon sources and overproduced after their depletion. The highest inulinase activity in minimal medium containing 10 g/l sucrose (6.4 IU/ml) was obtained at an initial (NH4)2SO4 concentration of 5 g/l, whereas it was reduced to about one fourth of this value and detected only at the beginning under nitrogen-limited conditions. The best sucrose concentrations for the enzyme production were 30 and 20 g/l in minimal and complex media, yielding 15.4 and 208 IU/ml, respectively. In general, the enzyme activity was much higher in complex than in minimal medium under all conditions. O2-enriched air neither improved inulinase production nor prevented ethanol formation.  相似文献   

13.
Amongst various carbon sources, xylan was found to be the sole inducer of endoxylanase production by Penicillium janthinellum MTCC 10889 in submerged cultivation. Endoxylanase synthesis by a xylan induced culture was initially repressed after a simultaneous addition of xylose, probably by the inducer exclusion mechanism, but it was resumed and achieved its highest level at a much later stage of growth (at 120 h). Xylose added after 30 h of growth cannot exert its full repressive effect. Although glucose was proved to be a more potent repressor than xylose, supplementation of salicin, an alcoholic β-glycoside containing d-glucose, with pure xylan resulted in an about 3.22 fold increase in the enzyme synthesis at 72 h followed by constant high production of the enzyme at least until the 144th h of growth. Inducing capacity of salicin in a xylan induced culture was significantly reduced when it was added after 30 h of growth. Addition of salicin and xylan help to partially overcome the repressive effect of xylose and glucose. Failure of salicin in recovering the endoxylanase synthesis in actinomycin D and cyclohexamide inhibited the xylan induced culture indicating that salicin cannot initiate the de novo synthesis of the enzyme.  相似文献   

14.
The effect of carbon source and its concentration, inoculum size, yeast extract concentration, nitrogen source, pH of the fermentation medium, and fermentation temperature on β-glucosidase production by Kluyveromyces marxianus in shake-flask culture was investigated. These were the independent variables that directly regulated the specific growth and β-glucosidase production rate. The highest product yield, specific product yield, and productivity of β-glucosidase occurred in the medium (pH 5.5) inoculated with 10% (v/v) inoculum of the culture. Cellobiose (20 g/L) significantly improved β-glucosidase production measured as product yield (Y P/S ) and volumetric productivity (Q P ) followed by sucrose, lactose, and xylose. The highest levels of productivity (144 IU/[L·h]) of β-glucosidase occurred on cellobiose in the presence of CSL at 35°C and are significantly higher than the values reported by other researchers on almost all other organisms. The thermodynamics and kinetics of β-glucosidase production and its deactivation are also reported. The enzyme was substantially stable at 60°C and may find application in some industrial processes.  相似文献   

15.
Two biotechnological systems were developed for sucrose conversion into levan and ethanol withZymomonas mobilis, ensuring a 66.7% transfer of substrate carbon in a batch and 61% carbon transfer in a continuous culture. The effect of glucose, ethanol, and medium pH on sucrose conversion byZ. mobilis was studied. The addition of ethanol to the fermentation medium, in the final conc. of 100 g/L, uncoupled levan synthesis from ethanol fermentation. For a continuous culture, the most efficient conversion of substrate carbon into levan was reached at pH 4.8, giving 64.2 g/L levan, with the levan yield of 0.22 g/g and the productivity of 3.2 g/L/h.  相似文献   

16.
The production of lignin peroxidase fromPhanerochaete chrysosporium was studied using immobilized mycelia in nylon-web cubes in semicontinuous fermentation using glucose pulses or ammonium tartrate pulses. Consistent enzyme production was achieved when glucose pulses were used, leading to an average activity of 253 U/L. The crude enzyme was added to eucalyptus kraft pulp before conventional and ECF bleaching sequences. Optimization of the enzymatic pretreatment led to the following operational conditions: enzyme load of 2 U/g of pulp, hydrogen peroxide addition rate of 10 ppm/h, and reaction time of 60 min. Pulp final characteristics were dependent on the chemical treatment sequence that followed enzymatic pretreatment. The chief advantage of enzymatic pretreatment was pulp viscosity preservation, which was observed in most of the experiments carried out with seven different chemical treatment sequences  相似文献   

17.
A preliminary screening work selectedPenicillium restrictum as a promising micro-organism for lipase production. The physiological response of the fungus towards cell growth and enzyme production upon variable carbon and nitrogen nutrition, specific air flow rate (Qa) and agitation (N) was evaluated in a 5-L bench-scale fermenter. In optimized conditions for lipase production meat peptone at 2% (w/v) and olive oil at 1% (w/v) were used in a growth medium with a C/N ratio of 9.9. Higher C/N ratios favored cell growth in detriment of enzyme production. Low extracellular lipase activities were observed using glucose as carbon source suggesting glucose regulation. Final lipase accumulation of 13,000 U/L was obtained, using optimized specific air flow rate (Qa) of 0.5 wm and an impeller speed (N) of 200 rpm. Agitation showed to be an important parameter to ensure nutrient availability in a growth medium having olive oil as carbon source.  相似文献   

18.
Octyl glucoside stimulated peroxidase formation inPhanerochaete chrysosporium ME-446 cultivated in cellulose-based media. Addition of 0.1% of the nonionic surfactant resulted in a ninefold (143 U/L) and sixfold (119 U/L) increase in LiP formation under conditions of N limitation and N excess, respectively. Octyl glucoside also stimulated MnP formation, but to a lesser extent than observed with LiP. The cellobiose-oxidizing enzymes (cellobiose dehydrogenase and cellobiose:quinone oxidoreductase) were stimulated by octyl glucoside when used at a concentration of up to 0.05%, but higher concentrations gave values similar to those for the controls. Little proteolytic activity was detected in the presence of the surfactant. In general, activities of the enzymes studied were of the same order as those seen using Tween-80. In contrast with Tween-80, octyl glucoside markedly inhibited [14C]DHP mineralization. Attempts to account for the observed inhibition of synthetic lignin degradation by P.chrysosporium in the presence of octyl glucoside are discussed.  相似文献   

19.
Streptomyces are good producers of enzymes of industrial interest, such as lignin peroxidase (LiP) and proteases. To optimize production of these enzymes by Streptomyces viridosporus T7A, two parameters were evaluated: carbon sources and calcium carbonate. Shake-flask fermentations were performed using culture media, with and without CaCO3, contained yeast extract, mineral salts and either glucose, lactose, galactose, or corn oil. In the absence of calcium carbonate, the maximum values for LiP and protease activities occurred during the idiophase with LiP activity being favored by glucose, corn oil, and galactose, and protease activity being favored only by corn oil. Calcium carbonate affected the cell morphology by reducing the size of the pellets. Moreover, in the presence of the salt, LiP production was growth-associated in all media but the glucose medium. Higher enzyme levels were observed when galactose and glucose were used as carbon sources. Protease activity was repressed by both glucose and galactose, whereas corn oil was the best carbon source for the enzyme production. Calcium carbonate increased LiP production by up to 2.6-fold. Such improvement was not observed for protease production, suggesting a selective effect of CaCO3 on LiP activity.  相似文献   

20.
Effect of environmental factors and carbohydrate on gellan gum production   总被引:3,自引:0,他引:3  
Submerged culture fermentation studies were carried out in batch mode for optimizing the environmental parameters and carbon source requirement by Pseudomonas elodea for the production of gellan gum. The maximum production of gellan gum was obtained with 16-h-old culture and 8% inoculum at 30°C and pH 7.0 after 52 h of incubation (6.0 g/L). Of the various carbon sources tested, 2% sucrose, glucose, and soluble starch yielded considerably high amounts of gellan. Studies on the concentration of various carbohydrates on gellan gum production indicated that the optimum concentration of glucose and starch was 3%, whereas for sucrose it was 4%. The addition of glucose in the medium above 3% had a detrimental effect on gellan yield. The investigation of intermediate two-step addition of glucose under identical conditions of fermentation showed an enhanced production of gellan (8.12 g/L) as compared with the control (6.0 g/L). To optimize the recovery of gellan from fermented broth, different solvents were tested for precipitation of gellan gum. Among the various solvents tested, tetrahydrofuran gave better recovery of gellan (82%) as compared with the conventional solvent isopropanol (49%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号