首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate oxygen dissociative adsorption to a platinum monolayer on Ni(110) surface (Pt/Ni(110)) by density functional theory. We have shown that the activation barrier on Pt/Ni(110) is lower than that on a clean Pt(001) surface. This may be due to the effect of magnetization of Pt surface. The reason of decrease of activation barrier can be attributed to the flow of electrons from oxygen to platinum surface because the d orbitals have spin polarization at the Fermi level where the down spin d orbitals are unoccupied.  相似文献   

2.
The adsorption position of oxygen on the clean Pt(111) surface has been determined by means of the transmission channeling technique. Oxygen adsorbs in a well ordered p(2 × 2) overlayer structure at temperatures 200 T 350 K. From an analysis of the angular scans along the [111], [110] and [100] axial directions it is concluded that the O atoms are adsorbed in the fcc three-fold hollow site exclusively at a height of 0.85 ± 0.06 Å above the Pt surface layer. From a narrowing of the [111] angular O scan, the O RMS displacement parallel to the surface is found to be 0.16 ±0.03 Å.  相似文献   

3.
Epitaxial layers of copper were formed on Pt(111) and Pt(553) single crystal surfaces by condensation of copper atoms from the vapor. Surface alloys were formed by diffusing the copper atoms into the platinum substrate at temperatures above 550 K. The activation energy for this process was found to be ~ 120 kJmol. These Pt/Cu surfaces were characterized by LEED, AES, and TDS of CO. The copper grows in islands on the Pt(111) surface and one monolayer is completed before another begins. There is an apparent repulsive interaction between the copper atoms and the step sites of the Pt(553) surface which causes a second layer of copper to begin forming before the first layer is complete. Epitaxial copper atoms block CO adsorption sites on the platinum surface without affecting the CO desorption energy. When the copper is alloyed with the platinum however, the energy of desorption of CO from the platinum was reduced by as much as 20 kJmol. This reduction in the desorption energy suggests an electronic modification that weakens the Pt-CO bond.  相似文献   

4.
J.H. Dai  Y. Song  R. Yang 《Surface science》2011,605(13-14):1224-1229
First principle calculations have been performed to explore the adsorption characteristics of water molecule on (001) and (110) surfaces of magnesium hydride. The stable adsorption configurations of water molecule on the surfaces of MgH2 were identified by comparing the total energies of different adsorption states. The (110) surface shows a higher reactivity with H2O molecule owing to the larger adsorption energy than the (001) surface, and the adsorption mechanisms of water molecule on the two surfaces were clarified from electronic structures. For both (001) and (110) surface adsorptions, the O p orbitals overlapped with the Mg s and p orbitals leading to interactions between O and Mg atoms and weakening the O–H bonds in water molecule. Due to the difference of the bonding strength between O and Mg atoms in the (001) and (110) surfaces, the adsorption energies and configurations of water molecule on the two surfaces are significantly different.  相似文献   

5.
The interactions among erbium, oxygen and silicon atoms on a Si(1 0 0)-2x1 reconstructed surface have been studied by means of X-ray photoelectron spectroscopy and Rutherford backscattering spectrometry. Erbium and oxygen were deposited at 600 °C on the Si surface and their behavior has been observed after different thermal processes. It was found that at 600 °C, the formation of a stable surface complex Er–O–Si is obtained together with Si oxidation; after an 800 °C annealing, the amount of oxygen bound to Si decreases and the remaining O atoms are mainly bonded to Er. An abrupt change was observed after 900 and 1000 °C annealings, which bury the Er atoms about 60 Å below the substrate surface. Our results give some hints to hypotise the O diffusion towards the Si bulk.  相似文献   

6.
The local adsorption structure of oxygen on Cu(1 0 0) has been studied using O 1s scanned-energy mode photoelectron diffraction. A detailed quantitative determination of the structure of the 0.5 ML (√2×2√2)R45°-O ordered phase confirms the missing-row character of this reconstruction and agrees well with earlier structural determinations of this phase by other methods, the adsorbed O atoms lying only approximately 0.1 Å above the outermost Cu layer. At much lower coverages, the results indicate that the O atoms adopt unreconstructed hollow sites at a significantly larger O–Cu layer spacing, but with some form of local disorder. The best fit to these data is achieved with a two-site model involving O atoms at Cu–O layer spacings of 0.41 and 0.70 Å in hollow sites; these two sites (also implied by an earlier electron-energy-loss study) are proposed to be associated with edge and centre positions in very small c(2×2) domains as seen in a recent scanning tunnelling microscopy investigation.  相似文献   

7.
The electronic structures of Ni, Pd, Pt, Cu, and Zn atoms adsorbed on the perfect MgO(1 0 0) surface and on a surface oxygen vacancy have been studied at the DFT/B3LYP level of theory using both the bare cluster and embedded cluster models. Ni, Pd, Pt, and Cu atoms can form stable adsorption complexes on the regular O site of the perfect MgO(1 0 0) surface with the binding energies of 19.0, 25.2, 46.7, and 17.3 kcal/mol, respectively, despite very little electron transfer between the surface and the metal atoms. On the other hand, adsorptions of Ni, Pd, Pt, and Cu atoms show strong interaction with an oxygen vacancy on the MgO(1 0 0) surface by transferring a significant number of electron charges from the vacancy to the adsorbed metal atoms and thus forming ionic bonds with the vacancy site. These interactions on the vacancy site for Ni, Pd, Pt, and Cu atoms increase the binding energies by 25.8, 59.7, 85.2, and 19.1 kcal/mol, respectively, compared to those on the perfect surface. Zn atom interacts very weakly with the perfect surface as well as the surface oxygen vacancy. We observed that the interaction increases from Ni to Pt in the same group and decreases from Ni to Zn in the same transition metal period in both perfect and vacancy systems. These relationships correlate well with the degrees of electron transfer from the surface to the adsorbed metal atom. The changes in the ionization potentials of the surface also correlate with the adsorption energies or degrees of electron transfers. Madelung potential is found to have significant effects on the electronic properties of metal atom adsorptions on the MgO(1 0 0) surface as well as on an oxygen vacancy, though it is more so for the latter. Furthermore, the Madelung potential facilitates electron transfer from the surface to the adsorbed metal atoms but not in the other direction.  相似文献   

8.
Pt单原子在低温CO氧化反应中具有很高的催化活性. 利用扫描隧道显微术与密度泛函理论,研究了Pt单原子在还原性TiO2(110)表面的吸附行为及其与CO和O2分子的相互作用. 研究发现在80 K低温下,TiO2表面的氧空位缺陷是Pt单原子的最优吸附位. 将CO和O2分子分别通入Pt单原子吸附后的TiO2表面,研究相应的吸附构型. 实验表明在低覆盖度下,单个Pt原子会俘获一个CO分子,CO分子同时与表面次近邻的五配位Ti原子(Ti5c)成键,进而形成非对称的Pt-CO 复合物构型. 将样品从80 K升温到100 K后,TiO2表面的CO分子会迁移到Pt-CO处形成Pt-(CO)2的复合结构. 对于O2分子,单个Pt原子同样会吸附一个O2分子,O2分子也会与最近邻或次近邻的Ti5c原子成键形成两种Pt-O2构型. 这些结果在单分子尺度上揭示了CO和O2与Pt单原子的相互作用,呈现了CO与O2反应中的初始状态.  相似文献   

9.
The coadsorption of Li and H atoms on Pt(001), Pt(110) and Pt(111) surfaces is studied using density functional theory with generalised gradient approximation. In all calculations Li, H and the two topmost layers of the metal were allowed to relax. At coverage of 0.25 mono-layer in a p(2×2) unit cell, lithium adsorption at the hollow site for the three surfaces is favoured over top and bridge sites. The most favoured adsorption sites for H atom on the Pt(001) and Pt(110) surfaces are the top and bridge sites, while on Pt(111) surface the fcc site appears to be slightly favoured over the hcp site. The coadsorption of Li and atomic hydrogen shows that the interaction between the two adsorbates is stabilising when they are far from each other. The analysis of Li, H and Pt local density of states shows that Li strongly interacts with the Pt surfaces.  相似文献   

10.
Density functional theory is used to study the effect of atomic oxygen adsorption at various coverages with and without the presence of water on ordered and Pt-segregated PtCo surfaces. The strength of O adsorption, as well as surface reconstruction effects due to the adsorbate are strongly influenced by the presence of the oxygen-philic transition metal on the surface or subsurface. At high O coverage, buckling of the Co atom on PtCo surfaces is much smaller than that of Pt on Pt(1 1 1) surfaces, and buckling of Pt atoms on Pt-skin surfaces is negligible. Also, the effect of an electric field perpendicular to the surface on adsorbed water and atomic oxygen is investigated. Spontaneous water dissociation is not found on the ordered and segregated alloy surfaces within the entire applied electric field range (−0.51 to 0.51 V/Å). Water changes orientation under strong negative fields, switching from a metal–O to a metal–H interaction, and the effect is much more pronounced in the low-coordination sites of cluster models.  相似文献   

11.
The deposition of carbon due to high temperature ethylene decomposition at Pt(110) was studied by XPS and STM techniques. In the temperature range 700–1400 K no graphite species were observed. Instead, two carbon states were distinguished by XPS. At temperatures 700–850 K chemisorbed carbon layer is formed with BE(C1s) = 284.2 eV, this carbon state reacting readily with both oxygen and hydrogen. At T> 850 K carbon layer with BE(C1s) = 284.6–284.9 eV is formed. Further study showed this carbon species to be stable up to 1150 K and to be inert towards both hydrogen and oxygen up to 1000 K. This state was attributed to diamond-like carbon (DLC). STM study of DLC on Pt(110) revealed the patched pseudo-C-(3 × 1) structure. This reconstruction is believed to account for the DLC formation at platinum (110) surface.  相似文献   

12.
Residual chlorines, which originate from HAuCl4, enhance the aggregation of gold (Au) nanoparticles and clusters, preventing the generation of highly active supported Au catalysts. However, the detailed mechanism of residual-chlorine-promoted aggregation of Au is unknown. Herein to investigate this mechanism, density functional theory (DFT) calculations of Au and Cl adsorption onto a reduced rutile TiO2 (110) surface were performed using a generalised gradient approximation Perdew, Burke, and Ernzerhof formula (GGA–PBE) functional and plane-wave basis. Although both Au and Cl atoms prefer to mono-absorb onto oxygen defect sites, Cl atoms have a stronger absorption onto a reduced TiO2 (110) surface, abbreviated as rTiO2 (110) in the following, than Au atoms. Additionally, co-adsorption of a Cl atom and a Au atom or Au nanorod onto a rTiO2 surface was investigated; Cl adsorption onto an oxygen defect site weakens the interaction between a Au atom or Au nanorod and rTiO2 (110) surface. The calculation results suggest that the depletion of interaction between Au and rTiO2 surface is due to strong interaction between Cl atoms at oxygen defect sites and neighbouring bridging oxygen (OB) atoms.  相似文献   

13.
Oxygen adsorption on the LaB6(100), (110) and (111) clean surfaces has been studied by means of UPS, XPS and LEED. The results on oxygen adsorption will be discussed on the basis of the structurs and the electronic states on the LaB6(100), (110) and (111) clean surfaces. The surface states on LaB6(110) disappear at the oxygen exposure of 0.4 L where a c(2 × 2) LEED pattern disappears and a (1 × 1) LEED pattern appears. The work function on LaB6(110) is increased to ~3.8 eV by an oxygen exposure of ~2 L. The surface states on LaB6(111) disappear at an oxygen exposure of ~2 L where the work function has a maximum value of ~4.4 eV. Oxygen is adsorbed on the surface boron atoms of LaB6(111) until an exposure of ~2 L. Above this exposure, oxygen is adsorbed on another site to lower the work function from ~4.4 to ~3.8 eV until an oxygen exposure of ~100L. The initial sticking coefficient on LaB6(110) has the highest value of ~1 among the (100), (110) and (111) surfaces. The (100) surface is most stable to oxygen among these surfaces. It is suggested that the dangling bonds of boron atoms play an important role in oxygen adsorption on the LaB6 surfaces.  相似文献   

14.
Scanning tunneling microscopy shows that a nanopattern forms as the Pt(110)-(1 x 2) surface is exposed to oxygen at room temperature or above. The nanopattern consists of [11[over]0] oriented O-induced stripes assembling into a (11 x 2) superstructure at high O coverage. The stripes form because the O adsorption energy increases by expanding the Pt lattice along the ridges of the surface as compared to the bulk. From interplay with density functional theory calculations, we show that the O-induced nanoscale periodicity is caused by short-ranged elastic relaxations confined to the surface.  相似文献   

15.
Oxygen adsorption and desorption were characterized on the kinked Pt(321) surface using high resolution electron energy loss spectroscopy, thermal desorption spectroscopy and Auger electron spectroscopy. Some dissociation of molecular oxygen occurs even at 100 K on the (321) surface indicating that the activation barrier for dissociation is smaller on the Pt(321) surface than on the Pt(111) surface. Molecular oxygen can be adsorbed at 100 K but only in the presence of some adsorbed atomic oxygen. The dominance of the v(OO) molecular oxygen stretching mode in the 810 to 880 cm?1 range indicates that the molecular oxygen adsorbs as a peroxo-like species with the OO axis parallel or nearly parallel to the surface, as observed previously on the Pt(111) surface [Gland et al., Surface Sci. 95 (1980) 587]. The existence of at least two types of peroxo-like molecular oxygen is suggested by both the unusual breadth of the v(OO) stretching mode and breadth of the molecular oxygen desorption peak. Atomic oxygen is adsorbed more strongly on the rough step sites than on the smooth (111) terraces, as indicated by the increased thermal stability of atomic oxygen adsorbed along the rough step sites. The two forms of adsorbed atomic oxygen can be easily distinguished by vibrational spectroscopy since oxygen adsorbed along the rough step sites causes a v(PtO) stretching mode at 560 cm?1, while the v(PtO) stretching mode for atomic oxygen adsorbed on the (111) terraces appears at 490 cm?1, a value typical of the (111) surface. Two desorption peaks are observed during atomic oxygen recombination and desorption from the Pt(321) surface. These desorption peaks do not correlate with the presence of the two types of adsorbed atomic oxygen. Rather, the first order low temperature peak is a result of the fact that about three times more atomic oxygen can be adsorbed on the Pt(321) surface than on the Pt(111) surface (where only a second order peak is observed). The heat of desorption for atomic oxygen decreases from about 290kJ/mol (70 kcal/mol) to about 196 kJ/mol (47 kcal/mol) with increasing coverage. Preliminary results concerning adsorption of molecular oxygen from the gas phase in an excited state are also briefly discussed.  相似文献   

16.
An atom superposition and election delocalization (ASED) technique applied to water adsorption on a small cluster model of Pt(111) shows weak and reversible chemisorption and facile and reversible hydrogen transfer to preadsorbed oxygen atoms as observed by Fisher, Sexton and Gland in EELS and UPS studies. Our theory predicts much stronger adsorption of water to Fe(100) with low barriers to dehydrogenation, in agreement with high temperature LEED-Auger results of Dwyer, Simmons, and Wei and wide temperature range XPS studies of Akimov. We predict a low barrier to transfer of hydrogen from water to adsorbed oxygen atoms, forming hydroxyl groups on the iron surface, and a fairly low barrier to the reverse reaction. On both metals we find hydroxyl groups are strongly held. Our calculations produce a trend toward greater negativity on going from adsorbed water to hydroxyl groups, and to hydroxyl dissociation products on these surfaces. We present reaction mechanisms, transition state geometries, and analysis in terms of molecular orbital theory and the total energy. It is found that the platinum is generally less reactive than iron toward water and hydroxyl species because platinum orbitals are less diffuse and the platinum s-d band lies lower, closer to adsorbate energy levels such that adsorbate-platinum antibonding orbitals are filled.  相似文献   

17.
The interaction of molecular oxygen with a Cu(110) surface is investigated by means of low energy ion scattering (LEIS) and secondary ion emission. The position of chemisorbed oxygen relative to the matrix atoms of the Cu(110) surface could be determined using a shadow cone model, from measurements of Ne+ ions scattered by adsorbed oxygen atoms. The adsorbed oxygen atoms are situated 0.6 ± 0.1 Å below the midpoint between two adjacent atoms in a 〈100〉 surface row. The results of the measurements of the ion impact desorption of adsorbed oxygen suggest a dominating contribution of sputtering processes. Ion focussing effects also contributes to the oxygen desorption. The ion induced and the spontaneous oxygen adsorption processes are studied using different experimental methods. Sticking probability values obtained during ion bombardment show a strong increase due to the ion bombardment.  相似文献   

18.
采用基于密度泛函理论(DFT)的平面波赝势(PW-PP)方法,研究了ZrMn2(110)清洁表面结构和氢原子在表面的吸附。弛豫表面结构的计算结果表明表面结构的最表层为曲面,且表面结构的原子间隙变小。由1Zr2Mn原子组成的空位是氢原子吸附在ZrMn2(110)表面的最佳吸附位,吸附能为3.352 eV,氢原子吸附后离表面的距离为1.140 Å。Mulliken电荷布居分析表明吸附的氢原子与表面原子的相互作用主要是接近氢原子的第一层原子与氢原子的相互作用。过渡态计算表明被吸附的氢原子进入表面内部需克服的最大势垒为1.033 eV。  相似文献   

19.
The H2D2 equilibration on Pt single crystals was investigated under intermediate pressure (100–400 Torr) and temperature (50–250°C), as a function of sulfur coverage. On Pt(110) and Pt(111), adsorbed sulfur modifies the kinetic parameters, activation energy and pre-exponential factor; the latter depends on the temperature on Pt(110) only. The clean Pt(110) face was found to be 5 times more active than the clean Pt(111). On both faces, adsorption of sulfur induces electronic effects on the neighbouring reactional sites. The difference in the behaviour of the two faces and a clear influence of the arrangement of the adsorbed sulfur atoms, deduced from LEED diagrams, tend to prove the structure dependency of the H2D2 reaction. A consistent reaction mechanism could be proposed, involving the dissociative adsorption and surface recombination of hydrogen and deuterium, and the reaction between adsorbed molecules for high sulfur coverages. The value of the sulfur coverage which makes the platinum inactive towards H2D2 is lower for the (111) than for the (110) orientation; this is in correlation with the roughness of the surface; the denser at atomic scale a surface is, the further is the extent of the lateral interactions due to adsorbed sulfur.  相似文献   

20.
Experiments using photo emission electron microscopy (PEEM) reveal that regions on a Pt(110) surface covered by chemisorbed O atoms may be converted into a subsurface O-phase, provided that it is preceded by the interaction of CO initiating the 1 × 2 → 1 × 1 transformation of the surface structure. However, the presence of subsurface oxygen also favors lifting of the surface reconstruction. A mathematical model of this process is developed using parameters derived from previous independent experiments and numerical simulations fitting new data to experimental findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号