首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
在空气环境中采用固相反应方法制备出三种A位Ca掺杂自旋梯状结构化合物(Sr1-xCax)14Cu24O41-δ样品(x=0,0.25,0.43)能量损失谱(EDS)分析表明,该体系ca掺杂样品均严重缺氧(分别对应的缺氧含量δ=7.64,6.99,6.67).X射线衍射(XRD)结果显示,所有样品均为单相,并且晶格常数a,b,c的值随着缺氧含量δ的增加而增大.1T直流磁场下的磁化率.温度曲线及其拟合结果表明,对无Ca掺杂样品Sr14Cu24O41-δ(δ=7.64),氧含量减少导致自旋链上空穴数的减少.自旋链上自由自旋的Cu离子数目增大,而参与二聚化的Cu离子数目略有减小;而对Ca掺杂样品(Sr1-xCax)14Cu24O41-δ,随着ca含量的增加,样品中氧缺失量降低,但Ca掺杂引起空穴减少的程度更强.  相似文献   

2.
我们成功合成了LaBa2Cu3-xFexOy(0≤x≤2.0)系列单相样品.X-光衍射分析显示,在x<2.0的整个掺杂区内样品皆保持为正交结构.晶格常数a,b和c随掺杂量的增加而增大.红外光谱(IR)表明:对于不掺杂的样品,在531cm-1和583cm-1附近有两个显著的吸收峰,分别相应于Cu(1)-O和Cu(2)-O的伸缩振动.在低掺杂区 (0≤x≤0.5),535cm-1峰随x增加向低频方向移动,当x>0.5时,该声子振动模随x增加反而逐渐硬化.585cm-1处的红外峰在0≤x≤1.0范围内峰位基本不变.高Fe掺杂区(x>1.0),体系的结构畸变很强,使上述两个红外峰宽化而变成一个宽峰.电子顺磁共振实验(EPR)揭示了不同含量的Fe掺杂对Cu2+的自旋关联行为的影响.本文对不同掺杂区的声子振动,晶格结构和自旋特征进行了分析讨论.  相似文献   

3.
我们用X射线衍射,红外光谱以及电子顺磁共振等实验手段,对LaBa2Cu3-xCoxOy (0≤x≤1.0)系列样品进行了研究.研究表明:所有样品皆为单相正交结构.对于不掺杂的样品在535cm-1和585cm-1附近有两个显著的吸收峰,分别相应于Cu(1)-O(1) 和Cu(2)-O(2) 的伸缩振动.在低掺杂区(0≤x≤0.5)535cm-1处的红外峰随x增加向低频方向移动,而585cm-1处的红外峰位置基本不变.当x>0.5时,这两个峰逐渐宽化,最后变成单个宽峰(x=1.0).掺杂样品在657cm-1处的声子振动模随掺杂量增加向高频方向移动,该峰为Cu(1)-O(4)的伸缩振动模.本文分析了晶体结构和声子振动以及自旋关联变化的相互关系.  相似文献   

4.
国际珠宝交易市场上最近出现了一批价值不菲的无色透明的宝石级钠沸石刻面成品,为提供快速区分其与仿制品材料的依据,文章通过红外光谱和拉曼光谱对三颗钠沸石样品的振动光谱进行了研究。结果表明, 其红外光谱主要表现为:4 000~1 200 cm-1的吸收峰是结构中水导致的吸收;1 200~600 cm-1 的强吸收与TO4四面体的内部T—O(T为Si或Al)的反对称和对称伸缩振动有关。拉曼光谱散射峰主要分布在300~600和700~1 200 cm-1两个区间。300~360 cm-1处较弱强度的拉曼散射峰是由于结构中水分子所导致。482 cm-1处中等强度的峰归属于硅氧四面体内部由于变形导致的拉曼位移。726 cm-1处的拉曼散射峰归属于Al—O的伸缩振动;974,1 038,1 084 cm-1的三处拉曼散射峰都是Si—O的伸缩振动导致的拉曼位移。  相似文献   

5.
采用固态反应法制备了GdBa2Cu3-xFexO7-δ(x=0.00-0.30)系列样品,利用X射线衍射、拉曼光谱以及电测量技术对体系的晶体结构、拉曼散射谱特征以及电输运特性进行了系统研究。结果表明,当Fe掺杂量在x=0.05-0.10区间时,体系的晶体结构发生了从正交相到四方相的转变。通过对拉曼光谱中典型振动模的指认及振动模随Fe掺杂量的变化规律,得到了拉曼谱随体系正交-四方结构相变的变化特征:对于具有正交相的x=0.00-0.05样品,拉曼谱具有五个与正交相结构相对应的特征峰;而对于具有四方相的x=0.10-0.30样品,随Fe掺杂量增加,振动模强度变弱,且典型振动模发生了不同程度的展宽或频移。电输运测量表明,随Fe掺杂量的增加,超导临界温度Tc降低,正常态电阻率增加且发生了金属-半导体相变。  相似文献   

6.
本文对吸附Cu2 前后梧桐树叶的红外光谱进行了分析比较.梧桐树叶的红外吸收光谱图主要由碳水化合物如木质素、纤维素等吸收带组成.1735cm-1和1615cm-1处的吸收峰是由C=O的伸缩振动引起的;1515cm-1的吸收峰是苯环的骨架振动峰,1243cm-1处是苯羟基中C-O的伸缩振动峰.1447cm-1处的吸收峰为CH3和CH2的不对称弯曲振动峰,1370cm-1处是甲基的弯曲振动峰.吸附Cu2 后,羧基的羰基峰(1735cm-1附近)向低波数移动1-2cm-1,酮羰基峰(1616cm-1附近)向高波数移动2-8cm-1;天然树叶1242cm-1处的吸收峰红移至1238cm-1处.红外光谱比较分析的结果表明吸附Cu2 后树叶的结构仍保持完整.  相似文献   

7.
采用固相烧结方法制备了纯ZnO陶瓷及GZO(Ga:ZnO)陶瓷。借助拉曼光谱和X射线衍射分别对ZnO陶瓷和不同掺Ga含量的GZO陶瓷进行了测量与分析。结果表明:GZO陶瓷均保持六角纤锌矿结构,在98cm-1,437cm-1处分别出现ZnO的特征峰E2(low)和E2(high);比之纯ZnO陶瓷,在GZO陶瓷的拉曼光谱中出现了位于584cm-1以及631cm-1附近的新峰,位于1148cm-1附近的E1(LO)的倍频模随着Ga掺杂浓度的提高也发生了一些变化。对新峰的振动模归属以及掺杂后原有峰的变化进行了讨论,其中将位于631cm-1附近的拉曼峰,归因于Ga替代Zn位与O成键的局域振动模式(LVMGa-O)。  相似文献   

8.
Yb:Y3Al5O12晶体晶格振动光谱的研究   总被引:1,自引:0,他引:1  
采用提拉法生长Y3Al5O12(YAG)晶体和Yb3 掺杂原子数分数分别为5%,10%,15%,20%,25%,50%和100%的Yb:Y3Al5O12(Yb:YAG)晶体.系统表征和分析了Yb3 掺杂浓度对拉曼光谱的影响.随着Yb3 掺杂浓度的增加,晶体的振动模式没有明显的变化,晶体结构没有改变;在370 cm-1和785 cm-1附近,振动吸收峰的半峰全宽逐渐增大.分析得出,Yb3 掺杂浓度对晶体的晶格、对称性、荧光寿命均有影响,从而可能影响到晶体的光谱和激光性能.  相似文献   

9.
为对比研究中国山东昌乐方山矿区与缅甸抹谷Le-shuza-kone矿区所产暗蓝色刚玉的光谱学特征,并确定方山矿区和Le-shuza-kone矿区刚玉中铁元素的价态及致色机理,采用X射线粉晶衍射(XRD)、显微拉曼光谱(RAMAN)、显微傅里叶红外光谱(FTIR)测试、电子探针(EPMA)及穆斯堡尔谱(CEMS)等方法,对产于方山矿区和Le-shuza-kone矿区暗蓝色刚玉的物相、光谱学特征及成分开展深入研究。X射线衍射结果表明,两个矿区所产的刚玉在2θ=25°~45°之间以3.408 8 Å(012),2.551 8 Å(104), 2.380 7 Å(110)和2.085 0 Å(113)四个衍射峰为特征。缅甸抹谷Le-shuza-kone矿区刚玉在2θ=22°~23°之间有3.981 5 Å(110)的弱衍射峰,在2θ=38°~40°之间有2.314 9 Å(111)的弱衍射峰,分别为硬水铝石和勃姆矿(一水软铝石)的特征。拉曼光谱散射峰主要分布于350~450和550~850 cm-1两个区间。416和378 cm-1为刚玉的特征峰,测试结果中415和377 cm-1的强峰属于内部结构变形导致的拉曼位移,749 cm-1处的拉曼散射峰归属于Al-O伸缩振动。方山矿区刚玉的793和811 cm-1拉曼峰和Le-shuza-kone矿区刚玉707, 793, 1 239和1 247 cm-1拉曼峰可作为区分产地的依据。红外光谱表现为两个矿区样品共有指纹区451,603,640, 779和1 088 cm-1的吸收峰,缅甸抹谷Le-shuza-kone矿区刚玉在官能团区有结构水(-OH)1 981, 2 110和3 311 cm-1的吸收峰,可作为特征峰与中国山东昌乐方山矿区刚玉相区别。缅甸抹谷Le-shuza-kone矿区暗蓝色刚玉含结构水,其形成过程中有水的参与,而山东昌乐方山矿区的刚玉中没有结构水。经电子探针测试和电价差法计算,中国山东昌乐方山矿区刚玉中铁元素的存在形式为Fe2+,Fe3+的含量为0,Le-shuza-kone矿区刚玉中Fe2+占Fe总量的91.9%,Fe3+占Fe总量的8.1%。创新性的在刚玉中铁元素的研究中引入了穆斯堡尔谱仪测试测得中国山东昌乐方山矿区刚玉内铁的赋存形式为Fe2+,而非Fe2++Fe3+,其深蓝色的体色是由Fe2+致色的,而非前人推测的Fe2++Fe3+或Fe2++Ti4+价间电荷转移致色。  相似文献   

10.
本文讨论了钒掺杂La1.85Sr0.15Cu1-xVxO4 δ体系的结构.与以往二三价元素掺杂不同,V掺杂的最高掺杂浓度较大,为0.15.精修结果表明,样品中V为 4价,并且全部替代了Cu.晶胞参数a,b随掺杂量x的增加而增加,c随x的增加减小.x=0.10时发生四方-正交相变.随掺杂含量的增加样品结构的变化在红外吸收谱中也有对应.随V含量的增加,500cm-1处的吸收峰的强度和位置都没有变化,这表明V替代在了Cu位.对于350cm-1处的吸收峰,x=0.5时在其附近左侧327cm-1处出现一个吸收峰,当x=0.10时在其右侧400cm-1处又出现一个吸收峰.400cm-1处吸收峰的出现是和四方-正交相变(x=0.10时发生四方-正交相变)相对应的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号