首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We derive the nilpotent (anti-) BRST symmetry transformations for the Dirac (matter) fields of an interacting four (3+1)-dimensional 1-form non-Abelian gauge theory by applying the theoretical arsenal of augmented superfield formalism where (i) the horizontality condition, and (ii) the equality of a gauge invariant quantity, on the six (4,2)-dimensional supermanifold, are exploited together. The above supermanifold is parameterized by four bosonic spacetime coordinates xμ (with μ=0,1,2,3) and a couple of Grassmannian variables θ and θ̄. The on-shell nilpotent BRST symmetry transformations for all the fields of the theory are derived by considering the chiral superfields on the five (4,1)-dimensional super sub-manifold and the off-shell nilpotent symmetry transformations emerge from the consideration of the general superfields on the full six (4,2)-dimensional supermanifold. Geometrical interpretations for all the above nilpotent symmetry transformations are also discussed within the framework of augmented superfield formalism.  相似文献   

2.
We derive the off-shell nilpotent (anti-)BRST symmetry transformations for the interacting U(1) gauge theory of quantum electrodynamics (QED) in the framework of the augmented superfield approach to the BRST formalism. In addition to the horizontality condition, we invoke another gauge invariant condition on the six (4,2)-dimensional supermanifold to obtain the exact and unique nilpotent symmetry transformations for all the basic fields present in the (anti-)BRST invariant Lagrangian density of the physical four (3+1)-dimensional QED. The above supermanifold is parametrized by four even space–time variables (with μ=0,1,2,3) and two odd variables (θ and ) of the Grassmann algebra. The new gauge invariant condition on the supermanifold owes its origin to the (super) covariant derivatives and leads to the derivation of unique nilpotent symmetry transformations for the matter fields. The geometrical interpretations for all the above off-shell nilpotent (anti-)BRST transformations are also discussed. PACS 11.15.-q, 12.20.-m, 03.70.+k  相似文献   

3.
We provide an alternative to the gauge covariant horizontality condition, which is responsible for the derivation of the nilpotent (anti-) BRST symmetry transformations for the gauge and (anti-) ghost fields of a (3+1)-dimensional (4D) interacting 1-form non-Abelian gauge theory in the framework of the usual superfield approach to the Becchi–Rouet–Stora–Tyutin (BRST) formalism. The above covariant horizontality condition is replaced by a gauge invariant restriction on the (4,2)-dimensional supermanifold, parameterised by a set of four spacetime coordinates, xμ(μ=0,1,2,3), and a pair of Grassmannian variables, θ and θ̄. The latter condition enables us to derive the nilpotent (anti-) BRST symmetry transformations for all the fields of an interacting 1-form 4D non-Abelian gauge theory in which there is an explicit coupling between the gauge field and the Dirac fields. The key differences and the striking similarities between the above two conditions are pointed out clearly. PACS 11.15.-q; 12.20.-m; 03.70.+k  相似文献   

4.
R. P. Malik  B. P. Mandal 《Pramana》2009,72(5):805-818
We show that the Grassmannian independence of the super-Lagrangian density, expressed in terms of the superfields defined on a (4,2)-dimensional supermanifold, is a clear-cut proof for the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST invariance of the corresponding four (3+1)-dimensional (4D) Lagrangian density that describes the interaction between the U(1) gauge field and the charged complex scalar fields. The above 4D field theoretical model is considered on a (4,2)-dimensional supermanifold parametrized by the ordinary four space-time variables x μ (with μ = 0, 1, 2, 3) and a pair of Grassmannian variables θ and (with θ 2 = 2 = 0, θ + θ = 0). Geometrically, the (anti-)BRST invariance is encoded in the translation of the super-Lagrangian density along the Grassmannian directions of the above supermanifold such that the outcome of this shift operation is zero.   相似文献   

5.
We formulate the second quantization of a charged scalar field in homogeneous, time-dependent electromagnetic fields, in which the Hamiltonian is an infinite system of decoupled, time-dependent oscillators for electric fields, but it is another infinite system of coupled, time-dependent oscillators for magnetic fields. We then employ the quantum invariant method to find various quantum states for the charged field. For time-dependent electric fields, a pair of quantum invariant operators for each oscillator with the given momentum plays the role of the time-dependent annihilation and the creation operators, constructs the exact quantum states, and gives the vacuum persistence amplitude as well as the pair-production rate. We also find the quantum invariants for the coupled oscillators for the charged field in time-dependent magnetic fields and advance a perturbation method when the magnetic fields change adiabatically. Finally, the quantum state and the pair production are discussed when a time-dependent electric field is present in parallel to the magnetic field.  相似文献   

6.
The Landau levels of scalar QED undergo continuous transitions under a homogeneous, time-dependent magnetic field. We analytically formulate the Klein–Gordon equation for a charged spinless scalar as a Cauchy initial value problem in the two-component first order formalism and then put forth a measure that classifies the quantum motions into the adiabatic change, the nonadiabatic change, and the sudden change. We find the exact quantum motion and calculate the pair-production rate when the magnetic field suddenly changes as a step function.  相似文献   

7.
By solving the quantum Vlasov equation, the dynamically assisted pair production for scalar quantum electrodynamics (QED) is investigated. It is verified that this mechanism still holds true for boson pair production. Two combinations of two electric fields having different time scales under various time delays are considered; it is found that the oscillations of the momentum spectrum and the number density of created bosons decrease with increasing time delay, and the latter has a maximum value when the time delay equals zero. Furthermore, the differences in vacuum pair production between bosons and fermions are also studied, and they are helpful for distinguishing the created bosons from fermions.  相似文献   

8.
Let us consider a theory ofn scalar, real, local, Poincaré covariant quantum fields forming an irreducible set and giving rise to one particle states belonging to the same mass different from zero. The vacuum is unique. It is shown under fairly weak assumptions that every Poincaré and TCP invariant symmetry of the theory, implemented unitarily, which mapps localized elements of the field algebra into operators almost local with respect to the former (such a symmetry we call a physical one) can be defined uniquely in terms of the incoming or outgoing fields and ann-dimensional (real) orthogonal matrix. The symmetry commutes with the scattering matrix. Incidentally we show also that the symmetry groups are compact. A special case of these symmetries are the internal symmetries and symmetries induced by locally conserved currents local with respect to the basic fields and transforming under the same representation of the Poincaré group. We may make linear combinations out the original fields resulting in complex fields and its complex conjugate in a suitable way. The inspection of the representations of the groupsSO(n) and their subgroups sheds some light on the s.c. generalized Carruthers Theorem concerning the self- and pair-conjugate multiplets.  相似文献   

9.
10.
11.
12.
13.
The super-Poincaré algebra in 10 dimensions is examined. The differences with respect to the other cases are pointed out. In particular, the scalar superfield is considered in detail as an example.  相似文献   

14.
15.
16.
This work deals with the construction of networks of topological defects in models described by a single complex scalar field. We take advantage of the deformation procedure recently used to describe kinklike defects in order to build networks of topological defects, which appear from complex field models with potentials that engender a finite number of isolated minima, both in the case where the minima present discrete symmetry, and in the non-symmetric case. We show that the presence of symmetry guide us to the construction of regular networks, while the non-symmetric case gives rise to irregular networks which spread throughout the complex field space. We also discuss bifurcation, a phenomenon that appear in the non-symmetric case, but is washed out by the deformation procedure used in the present work.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号