首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we relax the assumptions of a well known algorithm for continuous global optimization, Multilevel Single Linkage (MLSL). It is shown that the good theoretical properties of MLSL are shared by a slightly different algorithm, Non-monotonic MLSL (NM MLSL), but under weaker assumptions. The main difference with MLSL is the fact that in NM MLSL some non-monotonic sequences of sampled points are also considered in order to decide whether to start or not a local search, while MLSL only considers monotonic decreasing sequences. The modification is inspired by non-monotonic methods for local searches. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
In many discrete location problems, a given number s of facility locations must be selected from a set of m potential locations, so as to optimize a predetermined fitness function. Most of such problems can be formulated as integer linear optimization problems, but the standard optimizers only are able to find one global optimum. We propose a new genetic-like algorithm, GASUB, which is able to find a predetermined number of global optima, if they exist, for a variety of discrete location problems. In this paper, a performance evaluation of GASUB in terms of its effectiveness (for finding optimal solutions) and efficiency (computational cost) is carried out. GASUB is also compared to MSH, a multi-start substitution method widely used for location problems. Computational experiments with three types of discrete location problems show that GASUB obtains better solutions than MSH. Furthermore, the proposed algorithm finds global optima in all tested problems, which is shown by solving those problems by Xpress-MP, an integer linear programing optimizer (21). Results from testing GASUB with a set of known test problems are also provided.  相似文献   

3.
利用平面上的黄金分割法求全局最优解   总被引:5,自引:0,他引:5  
给出了无约束全局最优问题的一种解法 ,该方法是一维搜索中的 0 .61 8法的推广 ,不仅使其适用范围由一维扩展到平面上 ,并且将原方法只适用于单峰函数的局部搜索改进为可适用于多峰函数的全局最优解的搜索 .给出了收敛性证明 .本法突出的优点在于 :适用性强、算法简单、可以在任意精度内寻得最优解并且克服了以往直接解法所共有的要求大量计算机内存的缺点 .仿真结果表明算法是有效的 .  相似文献   

4.
Multiobjective optimization deals with problems involving multiple measures of performance that should be optimized simultaneously. In this paper we extend bucket elimination (BE), a well known dynamic programming generic algorithm, from mono-objective to multiobjective optimization. We show that the resulting algorithm, MO-BE, can be applied to true multi-objective problems as well as mono-objective problems with knapsack (or related) global constraints. We also extend mini-bucket elimination (MBE), the approximation form of BE, to multiobjective optimization. The new algorithm MO-MBE can be used to obtain good quality multi-objective lower bounds or it can be integrated into multi-objective branch and bound in order to increase its pruning efficiency. Its accuracy is empirically evaluated in real scheduling problems, as well as in Max-SAT-ONE and biobjective weighted minimum vertex cover problems.  相似文献   

5.
A branch-and-reduce approach to global optimization   总被引:4,自引:0,他引:4  
This paper presents valid inequalities and range contraction techniques that can be used to reduce the size of the search space of global optimization problems. To demonstrate the algorithmic usefulness of these techniques, we incorporate them within the branch-and-bound framework. This results in a branch-and-reduce global optimization algorithm. A detailed discussion of the algorithm components and theoretical properties are provided. Specialized algorithms for polynomial and multiplicative programs are developed. Extensive computational results are presented for engineering design problems, standard global optimization test problems, univariate polynomial programs, linear multiplicative programs, mixed-integer nonlinear programs and concave quadratic programs. For the problems solved, the computer implementation of the proposed algorithm provides very accurate solutions in modest computational time.  相似文献   

6.
In Akrotirianakis and Floudas (2004) we presented the theoretical foundations of a new class of convex underestimators for C 2 nonconvex functions. In this paper, we present computational experience with those underestimators incorporated within a Branch-and-Bound algorithm for box-conatrained problems. The algorithm can be used to solve global optimization problems that involve C 2 functions. We discuss several ways of incorporating the convex underestimators within a Branch-and-Bound framework. The resulting Branch-and-Bound algorithm is then used to solve a number of difficult box-constrained global optimization problems. A hybrid algorithm is also introduced, which incorporates a stochastic algorithm, the Random-Linkage method, for the solution of the nonconvex underestimating subproblems, arising within a Branch-and-Bound framework. The resulting algorithm also solves efficiently the same set of test problems.  相似文献   

7.
This paper presents a hybrid heuristic-triangle evolution (TE) for global optimization. It is a real coded evolutionary algorithm. As in differential evolution (DE), TE targets each individual in current population and attempts to replace it by a new better individual. However, the way of generating new individuals is different. TE generates new individuals in a Nelder- Mead way, while the simplices used in TE is 1 or 2 dimensional. The proposed algorithm is very easy to use and efficient for global optimization problems with continuous variables. Moreover, it requires only one (explicit) control parameter. Numerical results show that the new algorithm is comparable with DE for low dimensional problems but it outperforms DE for high dimensional problems.  相似文献   

8.
To solve complicated function optimization problems, a function optimization algorithm is constructed based on the Susceptible–Infective–Susceptible (SIS) epidemic model, the function optimization algorithm is called SIS algorithm, or SISA in short. The algorithm supposes that some male and female organisms exist in an ecosystem; each individual is characterized by a number of features; an infectious disease exists in the ecosystem and infects among individuals, the infection rule is that female individuals infect male individuals or male individuals infect female individuals, the disease attacks a part of features of an individual. The infected individuals can be cured; the cured individuals can be infected again after a period of time. The physique strength of an individual is decided synthetically by the infection, cure and susceptibility of certain features. The S–I operator is used to transfer feature information from male to female or female to male, the I–S operator is used to transfer feature information from male to male or female to female, the I–S operator and S–S operator are used to transfer feature information among individuals without sex difference. The individuals with strong physique can continue to grow, while the individuals with weak physique stop growing. Results show that the algorithm has characteristics of global convergence and high convergence speed for the complicated functions optimization problems, especially for high dimensional function optimization problems.  相似文献   

9.
Expensive optimization aims to find the global minimum of a given function within a very limited number of function evaluations. It has drawn much attention in recent years. The present expensive optimization algorithms focus their attention on metamodeling techniques, and call existing global optimization algorithms as subroutines. So it is difficult for them to keep a good balance between model approximation and global search due to their two-part property. To overcome this difficulty, we try to embed a metamodel mechanism into an efficient evolutionary algorithm, low dimensional simplex evolution (LDSE), in this paper. The proposed algorithm is referred to as the low dimensional simplex evolution extension (LDSEE). It is inherently parallel and self-contained. This renders it very easy to use. Numerical results show that our proposed algorithm is a competitive alternative for expensive optimization problems.  相似文献   

10.
SPT: a stochastic tunneling algorithm for global optimization   总被引:1,自引:0,他引:1  
A stochastic approach to solving unconstrained continuous-function global optimization problems is presented. It builds on the tunneling approach to deterministic optimization presented by Barhen and co-workers (Bahren and Protopopescu, in: State of the Art in Global Optimization, Kluwer, 1996; Barhen et al., Floudas and Pardalos (eds.), TRUST: a deterministic algorithm for global optimization, 1997) by combining a series of local descents with stochastic searches. The method uses a rejection-based stochastic procedure to locate new local minima descent regions and a fixed Lipschitz-like constant to reject unpromising regions in the search space, thereby increasing the efficiency of the tunneling process. The algorithm is easily implemented in low-dimensional problems and scales easily to large problems. It is less effective without further heuristics in these latter cases, however. Several improvements to the basic algorithm which make use of approximate estimates of the algorithms parameters for implementation in high-dimensional problems are also discussed. Benchmark results are presented, which show that the algorithm is competitive with the best previously reported global optimization techniques. A successful application of the approach to a large-scale seismology problem of substantial computational complexity using a low-dimensional approximation scheme is also reported.  相似文献   

11.
We present a new parallel method for verified global optimization, using a centralized mediator for the dynamic load balancing. The new approach combines the advantages of two previous models, the master slave model and the processor farm. Numerical results show the efficiency of this new method. For a large number of problems at least linear speedup is reached. The efficiency of this new method is also confirmed by a comparison with other parallel methods for verified global optimization. A theoretical study proves that using the best-first strategy to choose the next box for subdivision, no real superlinear speedup may be expected concerning the number of iterations. Moreover, the potential of parallelization of methods of verified global optimization is discussed in general.  相似文献   

12.
In this paper we introduce a pruning technique based on slopes in the context of interval branch-and-bound methods for nonsmooth global optimization. We develop the theory for a slope pruning step which can be utilized as an accelerating device similar to the monotonicity test frequently used in interval methods for smooth problems. This pruning step offers the possibility to cut away a large part of the box currently investigated by the optimization algorithm. We underline the new technique's efficiency by comparing two variants of a global optimization model algorithm: one equipped with the monotonicity test and one equipped with the pruning step. For this reason, we compared the required CPU time, the number of function and derivative or slope evaluations, and the necessary storage space when solving several smooth global optimization problems with the two variants. The paper concludes on the test results for several nonsmooth examples.  相似文献   

13.
Sequential selection has been solved in linear time by Blum et al. [M.B. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest, R.E. Tarjan, Time bounds for selection, J. Comput. System Sci. 7 (4) (1972) 448–461]. Running this algorithm on a problem of size N with N>M, the size of the main-memory, results in an algorithm that reads and writes O(N) elements, while the number of comparisons is also bounded by O(N). This is asymptotically optimal, but the constants are so large that in practice sorting is faster for most values of M and N.This paper provides the first detailed study of the external selection problem. A randomized algorithm of a conventional type is close to optimal in all respects. Our deterministic algorithm is more or less the same, but first the algorithm builds an index structure of all the elements. This effort is not wasted: the index structure allows the retrieval of elements so that we do not need a second scan through all the data. This index structure can also be used for repeated selections, and can be extended over time. For a problem of size N, the deterministic algorithm reads N+o(N) elements and writes only o(N) elements and is thereby optimal to within lower-order terms.  相似文献   

14.
We study infinite dimensional quadratic programming (QP) problems of integral type. The decision variable is taken in the space of bounded regular Borel measures on compact Hausdorff spaces. An implicit cutting plane algorithm is developed to obtain an optimal solution of the infinite dimensional QP problem. The major computational tasks in using the implicit cutting plane approach to solve infinite dimensional QP problems lie in finding a global optimizer of a non-linear and non-convex program. We present an explicit scheme to relax this requirement and to get rid of the unnecessary constraints in each iteration in order to reduce the size of the computatioinal programs. A general convergence proof of this approach is also given.  相似文献   

15.
Pure Adaptive Search is a stochastic algorithm which has been analyzed for continuous global optimization. When a uniform distribution is used in PAS, it has been shown to have complexity which is linear in dimension. We define strong and weak variations of PAS in the setting of finite global optimization and prove analogous results. In particular, for then-dimensional lattice {1,,k} n , the expected number of iterations to find the global optimum is linear inn. Many discrete combinatorial optimization problems, although having intractably large domains, have quite small ranges. The strong version of PAS for all problems, and the weak version of PAS for a limited class of problems, has complexity the order of the size of the range.The authors would like to thank the Department of Mathematics and Statistics at the University of Canterbury for support of this research.  相似文献   

16.
Quasi-Monte Carlo integration rules, which are equal-weight sample averages of function values, have been popular for approximating multivariate integrals due to their superior convergence rate of order close to 1/N or better, compared to the order 1/?N1/\sqrt{N} of simple Monte Carlo algorithms. For practical applications, it is desirable to be able to increase the total number of sampling points N one or several at a time until a desired accuracy is met, while keeping all existing evaluations. We show that although a convergence rate of order close to 1/N can be achieved for all values of N (e.g., by using a good lattice sequence), it is impossible to get better than order 1/N convergence for all values of N by adding equally-weighted sampling points in this manner. We then prove that a convergence of order N  − α for α > 1 can be achieved by weighting the sampling points, that is, by using a weighted compound integration rule. We apply our theory to lattice sequences and present some numerical results. The same theory also applies to digital sequences.  相似文献   

17.
Nelder–Mead simplex method (NM), originally developed in deterministic optimization, is an efficient direct search method that optimizes the response function merely by comparing function values. While successful in deterministic settings, the application of NM to simulation optimization suffers from two problems: (1) It lacks an effective sample size scheme for controlling noise; consequently the algorithm can be misled to the wrong direction because of noise, and (2) it is a heuristic algorithm; the quality of estimated optimal solution cannot be quantified. We propose a new variant, called Stochastic Nelder–Mead simplex method (SNM), that employs an effective sample size scheme and a specially-designed global and local search framework to address these two problems. Without the use of gradient information, SNM can handle problems where the response functions are nonsmooth or gradient does not exist. This is complementary to the existing gradient-based approaches. We prove that SNM can converge to the true global optima with probability one. An extensive numerical study also shows that the performance SNM is promising and is worthy of further investigation.  相似文献   

18.
In many global optimization problems motivated by engineering applications, the number of function evaluations is severely limited by time or cost. To ensure that each evaluation contributes to the localization of good candidates for the role of global minimizer, a sequential choice of evaluation points is usually carried out. In particular, when Kriging is used to interpolate past evaluations, the uncertainty associated with the lack of information on the function can be expressed and used to compute a number of criteria accounting for the interest of an additional evaluation at any given point. This paper introduces minimizers entropy as a new Kriging-based criterion for the sequential choice of points at which the function should be evaluated. Based on stepwise uncertainty reduction, it accounts for the informational gain on the minimizer expected from a new evaluation. The criterion is approximated using conditional simulations of the Gaussian process model behind Kriging, and then inserted into an algorithm similar in spirit to the Efficient Global Optimization (EGO) algorithm. An empirical comparison is carried out between our criterion and expected improvement, one of the reference criteria in the literature. Experimental results indicate major evaluation savings over EGO. Finally, the method, which we call IAGO (for Informational Approach to Global Optimization), is extended to robust optimization problems, where both the factors to be tuned and the function evaluations are corrupted by noise.  相似文献   

19.
The Pure Adaptive Search (PAS) algorithm for global optimization yields a sequence of points, each of which is uniformly distributed in the level set corresponding to its predecessor. This algorithm has the highly desirable property of solving a large class of global optimization problems using a number of iterations that increases at most linearly in the dimension of the problem. Unfortunately, PAS has remained of mostly theoretical interest due to the difficulty of generating, in each iteration, a point uniformly distributed in the improving feasible region. In this article, we derive a coupling equivalence between generating an approximately uniformly distributed point using Markov chain sampling, and generating an exactly uniformly distributed point with a certain probability. This result is used to characterize the complexity of a PAS-implementation as a function of (a) the number of iterations required by PAS to achieve a certain solution quality guarantee, and (b) the complexity of the sampling algorithm used. As an application, we use this equivalence to show that PAS, using the so-called Random ball walk Markov chain sampling method for generating nearly uniform points in a convex region, can be used to solve most convex programming problems in polynomial time.  相似文献   

20.
Many real problems can be modelled as robust shortest path problems on digraphs with interval costs, where intervals represent uncertainty about real costs and a robust path is not too far from the shortest path for each possible configuration of the arc costs. In this paper we discuss the application of a Benders decomposition approach to this problem. Computational results confirm the efficiency of the new algorithm. It is able to clearly outperform state-of-the-art algorithms on many classes of networks. For the remaining classes we identify the most promising algorithm among the others, depending of the characteristics of the networks. Received: September 2004 / Accepted: March 2005 AMS classification: 90C47, 52B05, 90C57 The work was partially supported by the European Commission IST projects MOSCA (IST-2000-29557) and BISON (IST-2001-38923). All correspondence to: Roberto Montemanni  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号