首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
富勒烯配合物的制备及其性质的研究是目前富勒烯化学最为活跃的研究领域之一[1],人们正致力于探索富勒烯各类衍生物的结构与性质之间的依赖关系,以期合成出具有特殊性能的富勒烯配合物,为富勒烯的实际开发应用奠定基础。本文首次合成C60[RuHCl(CO)(PPh3)]3配合物,采用元素分析、红外光谱、电子光谱进行鉴定和表征,并推测了其结构。1 实验部分1.1 C60[RuHCl(CO)(PPh3)]3的合成合成按下列反应进行:RuCl3+3PPh3+HCHO→RuHCl(CO)(PPh3)3RuHCl(…  相似文献   

2.
Fulerene complexe C60 Pd( Ph2PCH2PPh2)was perpared by the method of ligand substitution via the reaction of C60 with Pd(Ph2PCH2PPh2)2 under condition of a nitrogen atmosphere and refluxing,and the title compound was appraised and characterized by methods of elemental analysis,FT-IR,UV-vis,XPS and XRD. The results showed that the structure of purposeful product was that the Ph2PCH2PPh2 took up two coordination sites of the central metal,and C60 took up another two sites in σ-π feeback pattern. The porperties on photoelectricity,redox and thermostability of the title complexe were studied. The results of studying on photoelectricity showed that the photovoltaic effect of(n+n)heterojunction electrode formed by C60Pd(Ph2PCH2PPh2)/ GaAs was supper,especially in the BQ/ H2Q redox couple,and the greatest value of photovoltaic potential was up to 174 mV. The photovoltaic performance of C60Pd(Ph2PCH2PPh2)/GaAs electrode at 1 μm for thickness of C60Pd(Ph2PCH2PPh2)film was the best.  相似文献   

3.
从1985年Smalley等^[1]发现C60等富勒烯至1996年富勒烯的发现者获诺贝尔化学奖期间,在化学、材料、物理等领域形成了富勒烯的研究热潮^[2-5]。现在科学工作者正以较大的注意力投向富勒烯的化学修饰,研究富勒烯各类衍生物的结构与性能之间内在联系规律,以期望在开发应用方面取得突破性进展,为此也十分重视对具有特殊组成与结构的富勒烯衍生物的研究。本文首次合成出η^2-C60[RhCI(CO)(PPh3)2]配合物,并对其结构进行了表征。  相似文献   

4.
C60Ru(OCOCF3)(CO)(PPh3)配合物的合成及性能   总被引:1,自引:0,他引:1  
富勒烯;钌配合物;循环伏安法;C60Ru(OCOCF3)(CO)(PPh3)配合物的合成及性能  相似文献   

5.
富勒烯配合物η2-C60[Ru(NO)(PPh3)]2的合成与表征   总被引:4,自引:0,他引:4  
从1985年Kroto等[1]发现富勒烯至今, 其在化学、材料和物理等领域已有较多的研究[2~8]. 目前有关C60取代的金属小分子配合物(如羰基、亚硝酰基等)的研究方兴未艾. 而以NO为配体的亚硝酰基金属富勒烯配合物仅有数例[2,3], Green等[3]在研究以CO和NO为配体的金属富勒烯系列化合物的合成中, 认为C60不能与Ru(NO)2(PPh3)2发生反应. 本文利用Ru(NO)2(PPh3)2与C60反应首次合成出η2-C60[Ru(NO)(PPh3)]2配合物, 并对其进行了表征.  相似文献   

6.
在水溶液中合成了氯离子桥联的双核铜(Ⅱ)配合物[Cu2(Phen)2Cl2(μ-Cl)2],其结构经IR,元素分析和X-衍射表征,结果表明,配合物属单斜晶系,空间群Cc,晶胞参数为:a=0.985 7(3)nm,b=1.783 5(6)nm,c=1.337 8(5)nm,β=106.617(7)°,V=2.254(1)nm3,Z=4,Dc=1.855 g.cm-3,μ=2.385 mm-1,F(000)=1 256,偏差因子R1=0.122 6,wR2=0.173 9。配合物为双核络分子,每个金属铜离子与邻菲咯啉配体的2个N原子和3个Cl-离子配位形成畸变四方锥结构,配位多面体通过两氯离子形成共棱的双四方锥,通过氢键和芳环堆积作用,络分子形成三维网络结构。  相似文献   

7.
高景星  万惠霖 《分子催化》1995,9(2):125-131
Ru(OAc)2(Ph3P)2和1或2摩尔的双-(二苯基膦)乙烷(dppe)在回流的甲苯中反应,分别生成双膦配位的Ru(OAc)2(Ph3P)(dppe)和Ru(OAc)2(dppe)2。并进行了元素分析、IR、NMR等谱学表征。在温度-50至40℃的范围内,测定了Ru(OAc)2(Ph3P)(dppe)的^31P{^1H}NMR谱,讨论了配合物中膦配体的配位状态。在反应温度30至90℃、氢压1.  相似文献   

8.
SYNTHESIS AND STRUCTURE OF trans—Ru[Ph2PN(i—Bu)PPh2]2Cl2   总被引:1,自引:1,他引:0  
陆绮  张正之 《结构化学》1993,12(2):129-132
  相似文献   

9.
合成了一系列新的富勒烯钌配合物.通过元素分析、紫外-可见光谱、红外光谱、光电子能谱(XPS)和13C及31PNMR等多种手段对它们进行了表征.结果表明.该系列配合物分子内存在超共轭效应,共轭电子多.离域性好.通过光伏效应装置研究了它们的光电性能,结果显示该系列配合物具有良好的光电性能.  相似文献   

10.
以邻菲罗啉、2,5二羟基-1,4-二噻烷和Cu(ClO4)2.6H2O为原料,合成了中心对称的双核配合物[Cu2(C2O4)(C12H,N2)2(C3 H7NO)2](ClO4)2(1).通过红外光谱、元素分析等分析测试手段对其进行了表征;借助TG-DTG技术在氮气气氛下研究了配合物的热分解情况,并根据热分析结果确定了...  相似文献   

11.
Crystal Structures of (Ph4P)2[HfCl6]·2CH2Cl2 and (Ph4P)2[Hf2Cl10]·CH2Cl2 Colourless single crystals of (Ph4P)2[HfCl6]·2CH2Cl2 ( 1 ) and (Ph4P)2[Hf2Cl10]·CH2Cl2 ( 2 ) were obtained from hafniumtetrachloride and tetraphenylphosphonium chloride in dichloromethane solution, using the corresponding stoichiometry of the educts. Both compounds were characterized by X‐ray structure determinations. 1 : Space group P1¯, Z = 1, lattice dimensions at 193 K: a = 1018.3(1), b = 1121.0(1), c = 1240.1(1) pm, α = 70.55(1)°, β = 81.38(1)°, γ = 80.02(1)°, R1 = 0.0374. 2 : Space group P1¯, Z = 1, lattice dimensions at 193 K: a = 1124.4(1), b = 1141.9(1), c = 1281.4(1) pm, α = 63.80(1)°, β = 68.15(1)°, γ = 86.33(1)°, R1 = 0.0208.  相似文献   

12.
Crystal Structures of [Ph3PMe]Cl·CH2Cl2, [Ph4P]NO3·CH2Cl2, and [Ph4P]2[SiF6]·CH2Cl2 The crystal structures of the title compounds are determined by X‐ray diffraction. In all cases, the included dichloromethane molecules as well as the phosphonium cations are involved to form hydrogen bridges with the anions. [Ph3PMe]Cl·CH2Cl2 ( 1 ): Space group , Z = 2, lattice dimensions at 100 K: a = 890.3(1), b = 988.0(1), c = 1162.5(1) pm, α = 106.57(1)°, β = 91.79(1)°, γ = 92.60(1)°, R1 = 0.0253. [Ph4P]NO3·CH2Cl2 ( 2 ): Space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1057.0(1), b = 1666.0(1), c = 1358.9(1) pm, β = 100.10(1)°, R1 = 0.0359. [Ph4P]2[SiF6]·CH2Cl2 ( 3 ): Space group , Z = 2, lattice dimensions at 193 K: a = 1063.9(1), b = 1233.1(1), c = 1782.5(2) pm, α = 76.88(1)°, β = 83.46(1)°, γ = 72.29(1)°, R1 = 0.0332.  相似文献   

13.
Abstract

Reactions of PF5 and TaF5 with [Ph2P(O)]2 C=CH2 (I) and [Ph2P(O)]2 C=PPh3 (II) in MeCN and CH2Cl2 were studied by means of 19F, 31P, 1H and 13C NMR spectroscopy. It has become evident, that one or two phosphoryl groups in (I) and (II), as well as in cis- and trans-Ph2P(O)CH=CHP(O)Ph2, are involved in complex formation. The formation of tetra-fluoro cations PFL and PF4L along with pentafluorocom-plexes PF5L and TaF5L was found. Ligands are coordinated with central ions of complexes as chelates. The trans-atoms F1 of TaF 5L are nonequivalent because of nonsymmetric position to the Ph3P-group. The F1-atoms in PF4L are supposed to be symmetric to the Ph3P-group. The formation of tri-fluorocomplexes TaOF3L was also observed. Since the position of 19F NMR resonance lines of TaOF3L is near to that of pentafluorocomplexes, it can be supposed that either the change of Ta coordination number takes place, either oxygen atom comes into complex with inner sphere in the reaction with ligand or during hydrolysis.  相似文献   

14.
Novel Silver‐Telluride Clusters Stabilised with Bidentate Phosphine Ligands: Synthesis and Structure of {[Ag5(TePh)6(Ph2P(CH2)2PPh3)](Ph2P(CH2)2PPh2)}, [Ag18Te(TePh)15(Ph2P(CH2)3PPh2)3Cl], and [Ag38Te13(Te t Bu)12(Ph2P(CH2)2PPh2)3] Bidentate phosphine ligands have been found effective to stabilise polynuclear cores containing silver and chalcogenide ligands. They can act as intra and intermolecular bridges between the silver centres. The clusters {[Ag5(TePh)6(Ph2P(CH2)2PPh3)](Ph2P(CH2)2PPh2)} ( 1 ), [Ag18Te(TePh)15(Ph2P(CH2)3PPh2)3Cl] ( 2 ), and [Ag38Te13(TetBu)12(Ph2P(CH2)2PPh2)3] ( 3 ) have been prepared and their molecular structure determined. Compound 2 and 3 are molecular structures with separated cluster cores while 1 forms a polymeric chain bridged by phosphine ligands. ( 1 : space group P21/c (No. 14), Z = 4, a = 3518,1(7) pm, b = 2260,6(5) pm, c = 3522,1(7) pm, β = 119,19(3)°; 2 : space group R3 (No. 148), Z = 6, a = b = 3059,4(4) pm, c = 5278,8(9) pm; 3: space group Pccn (No. 56), Z = 4, a = 3613,0(9) pm, b = 3608,6(7) pm, c = 2153,5(8) pm)  相似文献   

15.
Synthesis, Crystal Structure and Spectroscopic Characterization of [Au12(PPh)2(P2Ph2)2(dppm)4Cl2]Cl2 The reaction of [(AuCl)2dppm] (dppm = Ph2PCH2PPh2) with P(Ph)(SiMe3)2 in CHCl3 results in the formation of [Au12(PPh)2(P2Ph2)2(dppm)4Cl2]Cl2 ( 1 ), the crystal structure of which was determined by single crystal X‐ray analysis (space group P21/c, a = 1425.3(3) pm, b = 2803.7(6) pm, c = 2255.0(5) pm, β = 95.00(3)°, V = 8977(3)·106 pm3, Z = 2). The dication in 1 consists of two Au6P3 units built by highly distorted Au3P and Au2P2 heterotetrahedra, connected via four bidentate phosphine ligands. Additionally, the compound was characterized by IR‐, UV‐ and NMR spectroscopy. The 31P{1H} NMR spectrum is discussed in detail.  相似文献   

16.
17.
Chloro- and Polyselenoselenates(II): Synthesis, Structure, and Properties of [Ph3(C2H4OH)P]2[SeCl4] · MeCN, [Ph4P]2[Se2Cl6], and [Ph4P]2[Se(Se5)2] By symproportionation of elemental selenium and SeCl4 in polar protic solvents the novel chloroselenates(+II), [SeCl4]2? and [Se2Cl6]2?, could be stabilized; they were crystallized with voluminous organic cations. They were characterized from complete X-ray structure analysis. Yellow-orange [Ph3(C2H4OH)P]2[SeCl4] · MeCN (space group P1 , a = 10.535(4), b = 12.204(5), c = 16.845(6) Å, α = 77.09(3)°, β = 76.40(3)°, γ = 82.75(3)° at 140 K) contains in its crystal structure monomeric [SeCl4]2? anions with square-planar coordination of Se(+II). The mean Se? Cl bond length is 2.441 Å. In yellow [Ph4P]2[Se2Cl6] (space group P1 , a = 10.269(3), b = 10.836(4), c = 10.872(3) Å, α = 80.26(3)°, β = 79.84(2)°, γ = 72.21(3)° at 140 K) a dinuclear centrosymmetric [Se2Cl6]2? anion, also with square-planar coordinated Se(+II), is observed. The average terminal and bridging Se? Cl bond distances are 2.273 and 2.680 Å, respectively. From redox reactions of elemental Se with boranate/thiolate in ethanol/DMF the bis(pentaselenido)selenate(+II) anion [Se(Se5)2]2? was prepared as a novel type of a mixed-valent chalcogenide. In dark-red-brown [Ph4P]2[Se(Se5)2] (space group P21/n, a = 12.748(4), b = 14.659(5), c = 14.036(5) Å, β = 108.53(3)° at 140 K) centrosymmetric molecular [Se(Se5)2]2? anions with square-planar coordination of the central Se(+II) by two bidentate pentaselenide ligands is observed (mean Se? Se bond lengths: 2.658 Å at Se(+II), 2.322 Å in [Se5]2?). The resulting six-membered chelate rings with chair conformation are spirocyclically linked through the central Se(+II). The vibrational spectra of the new anions are reported.  相似文献   

18.
The reactions of [M3(CO)12] (M=Ru or Fe) with 1,2 bis[(diphenylphosphino)methyl]benzene diselenide (dpmbSe2) in hot toluene afford a variety of phosphine-substituted selenido carbonyl clusters. They belong to the following three families: (i) 50-electron clusters with a M3Se2 core (2, 3, 5-7), (ii) 48-electron clusters with a M3Se core (1, 8), (iii) 34-electron clusters with a M2Se2 core (4). All these species derive from the P=Se bond cleavage. Cluster 1, which contains a hydrido, a phosphido, and a carbene ligand, is produced by multiple fragmentation of the diphosphine. This fragmentation appears related to the presence of the selenido ligand on the cluster, as the reaction of [Ru3(CO)12] with dpmb (not selenized) produces only carbonyl substitution by the phosphine to give [Ru3(CO)10(mu-dpmb)] (9). All the clusters synthesized have been characterized by spectroscopic techniques, and in some cases fluxional behavior has been detected in solution by NMR analysis. The structures of 1, 2, and 7-9 have been determined by X-ray diffraction methods.  相似文献   

19.
Thiochlorowolframates with Tungsten(V) and (VI). Crystal Structures of PPh4[WSCl4] and (PPh4)2[WS2Cl4] · 2 CH2Cl2 Diamagnetic (NEt4)2[WSCl4]2, having tungsten atoms linked via sulfur atoms, is obtained by the reaction of WCl5 with NEt4SH as well as by the reduction of WSCl4 with NEt4I in dichloromethane. If the reduction is performed with PPh4I, PPh4[WSCl4] with monomer anions is formed. Reaction of WCl6 with H2S in dichloromethane yields brown, insoluble WS2Cl2 which has terminal W?S groups and bridging W? S? W groups according to its IR spectrum. WS2Cl2 and PPh4Cl react to afford PPh4[WS2Cl3] · 2 CH2Cl2 and (PPh4)2[WS2Cl4] · 2 CH2Cl2. IR spectra are reported. The crystal structures of PPh4[WSCl4] and (PPh4)2[WS2Cl4] · 2 CH2Cl2 were determined by X-ray diffraction. PPh4[WSCl4]: tetragonal, space group P4/n, Z = 2, a = 1292.3 pm, c = 763.2 pm; R = 0.054 for 898 observed reflexions. The [WSCl4]? ion has the structure of a square pyramid with a rather short W?S bond of 206 pm length. (PPh4)2[WS2Cl4] · 2 CH2Cl2: triclinic, space group P1 , a = 1017.7, b = 1114.5, c = 1243.4 pm, α = 70.61, β = 79.73, γ = 80.80°; R = 0.076 for 1804 reflexions. The [WS2Cl4]2? has cis configuration; as it is situated on an inversion center it shows positional disorder.  相似文献   

20.
Russian Journal of Coordination Chemistry - Some peculiarities of the effect of enantiomers of the monodentate ligand on the stereoisomerism of the mixed octahedral tetrafluoride complexes of...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号