首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The standard (p = 0.1 MPa) molar enthalpies of formation of 2-, 3- and 4-cyanobenzoic acids were derived from their standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The Calvet high temperature vacuum sublimation technique was used to measure the enthalpies of sublimation of 2- and 3-cyanobenzoic acids. The standard molar enthalpies of formation of the three compounds, in the gaseous phase, at T = 298.15 K, have been derived from the corresponding standard molar enthalpies of formation in the condensed phase and standard molar enthalpies for phase transition. The results obtained are −(150.7 ± 2.0) kJ · mol−1, −(153.6 ± 1.7) kJ · mol−1 and −(157.1 ± 1.4) kJ · mol−1 for 2-cyano, 3-cyano and 4-cyanobenzoic acids, respectively. Standard molar enthalpies of formation were also estimated by employing two different methodologies: one based on the Cox scheme and the other one based on several different computational approaches. The calculated values show a good agreement with the experimental values obtained in this work.  相似文献   

2.
Differential scanning calorimetry and high temperature oxide melt solution calorimetry are used to study enthalpy of phase transition and enthalpies of formation of Cu2P2O7 and Cu3(P2O6OH)2. α-Cu2P2O7 is reversibly transformed to β-Cu2P2O7 at 338–363 K with an enthalpy of phase transition of 0.15 ± 0.03 kJ mol−1. Enthalpies of formation from oxides of α-Cu2P2O7 and Cu3(P2O6OH)2 are −279.0 ± 1.4 kJ mol−1 and −538.8 ± 2.7 kJ mol−1, and their standard enthalpies of formation (enthalpy of formation from elements) are −2096.1 ± 4.3 kJ mol−1 and −4302.7 ± 6.7 kJ mol−1, respectively. The presence of hydrogen in diphosphate groups changes the geometry of Cu(II) and decreases acid–base interaction between oxide components in Cu3(P2O6OH)2, thus decreasing its thermodynamic stability.  相似文献   

3.
The standard (p o = 0.1 MPa) molar enthalpies of formation \Updelta\textf H\textm\texto ( \textl), {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} ( {\text{l),}} of the liquid 2-methylfuran, 5-methyl-2-acetylfuran and 5-methyl-2-furaldehyde were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The Calvet high temperature vacuum sublimation technique was used to measure the enthalpies of vaporization of the three compounds. The standard (p o = 0.1 MPa) molar enthalpies of formation of the compounds, in the gaseous phase, at T = 298.15 K have been derived from the corresponding standard molar enthalpies of formation in the liquid phase and the standard molar enthalpies of vaporization. The results obtained were −(76.4 ± 1.2), −(253.9 ± 1.9), and −(196.8 ± 1.8) kJ mol−1, for 2-methylfuran, 5-methyl-2-acetylfuran, and 5-methyl-2-furaldehyde, respectively.  相似文献   

4.
Thermophysical and thermochemical studies have been carried out for crystalline parabanic acid. The thermophysical study was made by differential scanning calorimetry, DSC, over the temperature interval between T = (263 and 473) K. Two phase transitions were found: at T = (392.3 ± 1.6) K with the enthalpy of transition of (2.1 ± 0.4) kJ · mol−1 and at T = (509.8 ± 1.5) K, when the compound was scanned to its fusion temperature. The standard (p = 0.1 MPa) molar enthalpy of formation, at T = 298.15 K, for crystalline parabanic acid was determined using static-bomb combustion calorimetry as −(590.2 ± 1.0) kJ · mol−1. The standard molar enthalpy of sublimation, at T = 298.15 K, was derived from the variation of their vapour pressures, measured by the Knudsen-effusion method, with the temperature. These two thermochemical parameters yielded the standard molar enthalpy of formation in the gaseous phase, at T = 298.15 K, as −(470.8 ± 1.2) kJ · mol−1.  相似文献   

5.
This compendium summarizes the fusion enthalpies of approximately 1000 new measurements. A group additivity method developed to estimate the total phase change entropies and enthalpies of organic solids is updated, applied to the new data and the results are compared. The uncertainties associated with the 1016 new measurements, ±18.5 J mol−1 K−1 and ±7.6 kJ mol−1 for total phase change entropies and enthalpies, respectively, are similar in magnitude to those reported previously. Experimental and estimated fusion entropies and fusion enthalpies along with references are available as supplementary material.  相似文献   

6.
The standard (p° = 0.1 MPa) molar energies of combustion of 2-furancarbonitrile, 2-acetylfuran, and 3-furaldehyde were measured by static bomb combustion calorimetry; the Calvet high-temperature microcalorimetry was used to measure the enthalpies of vaporization of these liquid compounds. The standard molar enthalpies of formation of the three compounds, in the gaseous phase, at T = 298.15 K, have been derived from the corresponding standard molar enthalpies of formation in the liquid phase and the standard molar enthalpies of phase transition, as (106.8 ± 1.1) kJ · mol?1, ?(207.4 ± 1.3) kJ · mol?1, and ?(151.9 ± 1.1) kJ · mol?1, for 2-furancarbonitrile, 2-acetylfuran, and 3-furaldehyde, respectively.Standard molar enthalpies of formation are discussed in terms of the isomerization ortho meta. Enthalpic increment values of the introduction of the functional groups –CN, –CHO, and –COCH3 were also compared with some other heterocycles; i.e. thiophene and pyridine.  相似文献   

7.
A static-bomb combustion calorimeter and a rotating-bomb combustion calorimeter were used to determine the energies of combustion of 2-methylbenzothiazole, 2-methylbenzoxazole, and 2-methyl-2-thiazoline. The static- and rotating-bomb calorimeters were recently calibrated by the standard benzoic acid combustion runs and they were tested with adequate secondary combustion standards. The rotating-bomb calorimeter was tested using thianthrene and, in the present work, 1,2,4-triazole was used to test the static-bomb calorimeter. From the energies of combustion of the compounds under study, the liquid-phase standard molar enthalpies of formation were derived, at T = 298.15 K, as: (72.5 ± 1.5), (?50.7 ± 2.1), and (?88.5 ± 2.8) kJ mol?1, respectively.  相似文献   

8.
The standard partial molar entropy of the aqueous tetrabutylammonium cation, not known previously, has now been obtained, based on the molar entropy of two of its crystalline salts, the iodide and the tetraphenylborate, recently determined experimentally for this purpose. The calculation required also published molar enthalpies of solution and solubilities of these two salts as well as of the perchlorate. The choice of the anions depended mainly on the limited solubilities of the examined salts in water, facilitating the estimation of the relevant activity coefficients. The result is S(Bu4N+, aq) = (380 ± 20) J · K−1 · mol−1 at T = 298.15 K, on the mol · dm−3 scale and based on S(H+, aq) = (−22.2 ± 1.2) J · K−1 · mol−1 (yielding the ‘absolute’ value). The molar entropy of this cation in the ideal gas standard state, S(Bu4N+, g) = (798 ± 8) J · K−1 · mol−1 then yielded the molar entropy of hydration ΔhydS (Bu4N+) = (−418 ± 23) J · K−1 · mol−1.  相似文献   

9.
The reaction between the magnesium β-diketonate complex Mg(tmhd)2(H2O)2 and 1 equiv. of N,N,N′,N′-tetramethylethylenediamine (tmeda = Me2NCH2CH2NMe2) in hexane at room temperature yielded Mg(tmhd)2(tmeda). The standard enthalpy of sublimation (83.2 ± 2.3 kJ mol−1) and entropy of sublimation (263 ± 6.3 J mol−1 K−1) of Mg(tmhd)2(tmeda) were obtained from the temperature dependence vapour pressure, determined by adopting a horizontal dual arm single furnace thermogravimetric analyser as a transpiration apparatus. From the observed melting point depression DTA, the standard enthalpy of fusion (58.3 ± 5.2 kJ mol−1) was evaluated, using the ideal eutectic behaviour of Mg(tmhd)2(tmeda) as a solvent with bis(2,4-pentanedionato)magnesium(II), Mg(acac)2 as a non-volatile solute.  相似文献   

10.
The diffusion of strontium and zirconium in single crystal BaTiO3 was investigated in air at temperatures between 1000 °C and 1250 °C. Thin films of SrTiO3, deposited by spin coating a precursor solution and thin films of zirconium, deposited onto the sample surfaces by sputtering, were used as diffusion sources. The diffusion profiles were measured by SIMS depth profiling on a time-of-flight secondary ion mass spectrometer (ToF-SIMS). The diffusion coefficients of strontium and zirconium were given by DSr = 3.6 × 102.0±4.4 exp[−(543 ± 117) kJ mol−1/(RT)] cm2 s−1 and DZr = 1.1 × 101.0±2.1 exp[−(489 ± 56) kJ mol−1/(RT)] cm2 s−1. The results are discussed in terms of different diffusion mechanisms in the perovskite structure of BaTiO3.  相似文献   

11.
An on-line solution-reaction isoperibol calorimeter has been constructed. The performance of the apparatus was evaluated by measuring the molar enthalpy of solution of KCl in water at 298.15 K. The uncertainty and the inaccurary of the experimental results were within ±0.3% compared with the recommended reference data. Using the calorimeter, the molar enthalpies of reaction for the following two reactions: LaCl3·7H2O(s)+2Hhq(s)+NaAc(s)=La(hq)2Ac(s)+NaCl(s)+2HCl(g)+7H2O(l) and PrCl3·6H2O(s)+2Hhq(s)+NaAc(s)=Pr(hq)2Ac(s)+NaCl(s)+2HCl(g)+6H2O(l), were determined at T=298.15 K, as −(78.3±0.6) and −(97.3±0.5) kJ mol−l, respectively. From the above molar enthalpies of reaction and other auxiliary thermodynamic quantities, the standard molar enthalpies of formation of La(hq)2Ac and Pr(hq)2Ac, at T=298.15 K, have been derived to be −(1535.5±0.7) and −(1536.7±0.6) kJ mol−l, respectively.  相似文献   

12.
The energies of combustion for 2-nitrobenzenesulfonamide (cr), 3-nitrobenzenesulfonamide (cr), and 4-nitrobenzenesulfonamide (cr) were determined using a recently described rotating-bomb combustion calorimeter. The condensed phase molar energies of combustion obtained were ?(3479.2 ± 1.0) kJ · mol?1 for 2-nitrobenzenesulfonamide (cr), ?(3454.2 ± 1.1) kJ · mol-1 for 3-nitrobenzenesulfonamide (cr), and ?(3450.1 ± 1.9) kJ · mol-1 for 4-nitrobenzenesulfonamide (cr). From these combustion energy values, the standard molar enthalpies of formation in the condensed phase were obtained as: ?(341.3 ± 1.3) kJ · mol?1, ?(366.3 ± 1.3) kJ · mol?1, and ?(370.4 ± 2.1) kJ · mol?1, respectively. Polyethene bags were used as an auxiliary material in the combustion experiments. The heat capacities and purities of the compounds were determined using a differential scanning calorimeter.  相似文献   

13.
The energies of combustion in fluorine of gallium nitride and indium nitride in wurzite crystalline structure have been measured in a two-compartment calorimetric bomb, and new standard molar enthalpies of formation have been calculated: ΔfHm0(GaN(cr) 298.15 K)= –(163.7±4.2) kJ mol–1 and ΔfHm0(InN(cr) 298.15 K)= –(146.5±4.6) kJ mol–1 . Comparison with the recommended values of the ΔfHm0 nitrides from the literature is also presented.  相似文献   

14.
The kinetics of sublimation of bis(2,2,6,6-tetramethyl-3,5-heptanedionato)copper(II), [Cu(tmhd)2] was studied by non-isothermal and isothermal thermogravimetric (TG) methods. The non-isothermal sublimation activation energy values determined following the procedures of Friedman, Kissinger, and Flynn–Wall methods yielded 93 ± 5, 67 ± 2, and 73 ± 4 kJ mol−1, respectively and the isothermal sublimation activation energy was found to be 97 ± 3 kJ mol−1 over the temperature range of 375–435 K. The dynamic TG run proved the complex to be completely volatile and the equilibrium vapor pressure (pe)T of the complex over the temperature range of 375–435 K determined by a TG-based transpiration technique, yielded a value of 96 ± 2 kJ mol−1 for its standard enthalpy of sublimation (ΔsubH°).  相似文献   

15.
Adsorption (at a low temperature) of nitrogen on the protonic zeolite H-Y results in hydrogen bonding of the adsorbed N2 molecules with the zeolite Si(OH)Al Brønsted-acid groups. This hydrogen-bonding interaction leads to activation, in the infrared, of the fundamental N–N stretching mode, which appears at 2334 cm−1. From infrared spectra taken over a temperature range, the standard enthalpy of formation of the OH···N2 complex was found to be ΔH0 = −15.7(±1) kJ mol−1. Similarly, variable-temperature infrared spectroscopy was used to determine the standard enthalpy change involved in formation of H-bonded CO complexes for CO adsorbed on the zeolites H-ZSM-5 and H-FER; the corresponding values of ΔH0 were found to be −29.4(±1) and −28.4(±1) kJ mol−1, respectively. The whole set of results was analysed in the context of other relevant data available in the literature.  相似文献   

16.
To derive accurately the thermodynamic parameters governing the hydrolysis of the lactone ring at physiological pH, a derivative spectrophotometric technique was used for the simultaneous estimation of lactone and carboxylate forms of the 10-hydroxy-camptothecin (10-HC). Validation of the analytical method was done with respect to reproducibility, percent recovery, and level of detection. Hydrolysis of the lactone ring of 10-HC followed a 1st order decay with a rate constant equal to (0.0281 ± 0.001) min−1 in PBS at pH 7.4 and at a temperature of 310 K. The activation energy for the hydrolysis reaction as calculated from the Arrhenius equation was (79.41 ± 0.92) kJ · mol−1, whereas the enthalpy and entropy of hydrolysis of 10-hydroxy-camptothecin were on average 12.45 kJ · mol−1 and 52.37 J · K−1 · mol−1, respectively. The positive enthalpy and entropy values of the 10-HC-lactone hydrolysis indicate that the reaction is endothermic and entropically driven.  相似文献   

17.
The heat capacity and the enthalpy increments of strontium niobate Sr2Nb2O7 and calcium niobate Ca2Nb2O7 were measured by the relaxation time method (2–300 K), DSC (260–360 K) and drop calorimetry (720–1370 K). Temperature dependencies of the molar heat capacity in the form Cpm = 248.0 + 0.04350T − 3.948 × 106/T2 J K−1 mol−1 for Sr2Nb2O7 and Cpm = 257.2 + 0.03621T − 4.434 × 106/T2 J K−1 mol−1 for Ca2Nb2O7 were derived by the least-square method from the experimental data. The molar entropies at 298.15 K, Sm°(298.15 K) = 238.5 ± 1.3 J K−1 mol−1 for Sr2Nb2O7 and Sm°(298.15 K) = 212.4 ± 1.2 J K−1 mol−1 for Ca2Nb2O7, were evaluated from the low-temperature heat capacity measurements.  相似文献   

18.
The present work reports the experimental determination of the standard (p o = 0.1 MPa) molar enthalpies of formation in the condensed and gaseous phases, at T = 298.15 K, of 5- and 6-nitroindazole. These results were derived from the measurements of the standard molar energies of combustion, using a static bomb calorimeter and from the standard molar enthalpies of sublimation derived by the application of Clausius–Clapeyron to the temperature dependence of the vapour pressures measured by the Knudsen effusion technique. The results are interpreted in terms of the energetic contributions of the nitro groups in the different positions of the aromatic ring.  相似文献   

19.
The energy of combustion of 2,5-dimethoxybenzoic acid has been determined using a static bomb calorimeter. The vapor pressures of the compound have been measured over a 18 K temperature interval by the Knudsen effusion technique. Heat capacity measurements betweenT=270 K andT=338 K were carried out by DSC. From these experimental results the standard molar enthalpies of combustion, sublimation, and formation in the crystalline and gaseous state at the temperature 298.15 K have been derived. With this compound, the series of mono- and dimethoxy-benzoic acids have been completed. Theirf H m o values were expressed by an additive relationship, taking into account the number of methoxy groups and the number of all 1,2 interactions: an accuracy of 3.3 kJ·mol–1 was achieved. In an alternative approach the substituent effect of the methoxy groups was evaluated within the framework of isodesmic reactions. The effect of disubstitution was referred to mono derivatives and the excess energy—the so-called buttressing effect—was evaluated (2–24 kJ· mol–1 for individual bis derivatives). These values were explained in terms of the conformation of the methoxy group around the Car-O bond.  相似文献   

20.
The kinetic parameters, namely the triplet activation energy EA, model function f(α) or g(α) and pre-exponential factor A of the oxidation of Constantan tapes in 1 atm of oxygen have been determined from both isothermal and non-isothermal thermogravimetry. For isothermal experiments, with temperatures ranging from 650 °C to 900 °C, the results from direct conversion of the weight increase as a function of the time and curve fitting, are compared with the isoconversion method. For the non-isothermal experiments, with heating rates from 1 °C/min to 20 °C/min, comparison is made between the Friedman differential method and the integral methods of Kissinger, Ozawa and Li and Tang. All methods give apparent activation energies with relative standard deviations as low as 3%. The results converge to the identification of three stages in the oxidation behaviour. A parabolic law for reaction extents α below 15% with EA = 246 ± 7 kJ mol−1, ln A = 14.3, is followed by two linear stages with EA = 244 ± 4 kJ mol−1 and ln A = 15.3 for 0.18 < α < 0.35 and EA = 228 ± 15 kJ mol−1, ln A ≈ 13 for α > 45%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号