首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of applied voltage on photoluminescence (PL) in porous silicon was studied. A strong PL band around 680 nm was observed when excited by a 300 nm ultraviolet light with no voltage applied, but upon increasing the bias voltage, a strong and progressive decrease of the PL intensity was observed leading finally to a complete quenching of the emitted light at 1.80 V. The peak position of the emission appears to be stable. This effect is completely irreversible, and the spectra depend on the increased voltage to the sample and corresponding temperature increase. Nonradiative recombination resulting from the thermal oxidation was suggested to be responsible for the quenching.  相似文献   

2.
Polycrystalline ZnO films with good orientation were deposited on sapphire, quartz, Si and 7059 glass substrates by r.f. magnetron sputtering. A strong UV photoluminescence (PL) peak (located at 356 nm) and a weak blue emission peak (located at 446 nm) were observed at room temperature (RT) for the films deposited on sapphire, quartz and Si substrates when excited with 270 nm light. For the films prepared on Corning 7059 glass, only a strong 446 nm blue emission peak was found, and the PL intensity decreased with increasing oxygen pressure during films deposition. The intensity of the UV emission increased 7 and 14 times, respectively, for the films on sapphire and quartz substrates after high temperature annealing in vacuum. The UV emission originates from the inter-band transition of electrons and the blue emission is due to transition of electrons from the shallow donor level of the oxygen vacancies to the valence band.  相似文献   

3.
InGaN/GaN-multiple-quantum-well-based light emitting diode (LED) nanopillar arrays with a diameter of approximately 200nm and a height of 700nm are fabricated by inductively coupled plasma etching using Ni self-assembled nanodots as etching mask. In comparison to the as-grown LED sample an enhancement by a factor of four of photoluminescence (PL) intensity is achieved after the fabrication of nanopillars, and a blue shift and a decrease of full width at half maximum of the PL peak are observed. The method of additional wet etching with different chemical solutions is used to remove the etch-induced damage. The result shows that the dilute HCl (HCl:H2O=1:1) treatment is the most effective. The PL intensity of nanopillar LEDs after such a treatment is about 3.5 times stronger than that before treatment.  相似文献   

4.
Wu Y  Wang YS  He DW  Fu M  Chen ZM  Li Y  Miao F 《光谱学与光谱分析》2011,31(4):890-893
采用溶胶-凝胶法在Zn2SiO4基质中掺杂Eu3+,合成了红色荧光粉Zn2SiO4:Eu3+.通过样品的X射线衍射光谱、红外光谱、扫描电镜以及光致发光光谱的测试和表征,研究了Zn2SiO4:Eu3+的内部结构和发光特性.扣描电镜结果显示样品为球状荧光粉,颗粒直径为1~3μm.在395 nm激发下,样品在613 nm处发射出很强的红光.结合荧光光谱,分析了样品的退火温度,Eu3+的浓度,电荷补偿剂Li+的浓度对样品发光强度的影响.研究发现,红色荧光粉Zn2SiO4:Eu3+的发光强度随退火温度的升高而增加,发光强度随Eu3+和Li+浓度的增加先增大后减小.  相似文献   

5.
No known reports exist on luminescence enhancement under polarized light excitation. In this study, ZnS nanocrystals have been observed to produce brighter luminescence when excited by polarized light. ZnS:Mn bulk and nanocrystals have shown fivefold to tenfold increase in photoluminescence (PL) intensity when excited with linearly polarized light at 305 nm and 340 nm. Luminescence enhancement to a lesser degree was observed with linearly polarized light excitation for ZnS:Cu, Al and ZnS:Ag, Al nanocrystals. The observations suggest emission intensity dependence on the degree of anisotropy, which could be correlated mainly with the symmetry of the luminescence center and also to a lesser extent with nanoparticle shape asymmetry.  相似文献   

6.
We have investigated the photoluminescence (PL) properties of p-type InGaAsN epilayers grown by a radio frequency (RF) plasma-assisted nitrogen source in a molecular beam epitaxy (MBE) system. The low temperature PL spectra exhibited both a LE emission peak at around 1000 nm and a broad deep band at 1200–1700 nm. As temperature increases, the LE peak position redshifts and its intensity becomes weaker and disappears at 100 K. The deep PL band may originate from recombinations associated with N-related traps. The hole concentration dependence of the integrated intensity ratio of the LE emission peak to the deep PL band at 5 K can be separated into two doping regimes. At light doping regime (1.0×1016 cm-318 cm-3), this ratio is linearly proportional to the hole concentration and is explained in terms of neutral-acceptor-bound excitons. At high doping regime (2.1×1018 cm-319 cm-3), the LE emission could possibly originate from mechanisms arising from hole degeneracy. This intensity ratio saturates at high doping regime. PACS 68.55.Ln; 81.05.Ea; 78.55.Cr  相似文献   

7.
Si quantum dots (SiQDs) with sizes ranging from 5 to 20 nm were fabricated by vapor condensation. They showed red photoluminescence (PL) in vacuum with the peak located at around 750 nm. After the specimen was exposed to air, the PL intensity became higher, and continued to increase during the PL test with a cycling of vacuum-air-vacuum. In pure oxygen, the PL intensity exhibited an irreversible decrease, while in nitrogen a smaller amount of reversible increase of PL intensity was observed. Furthermore, the PL intensity exhibited a remarkable enhancement if the SiQDs were treated with water. With HF treatment, the PL peak position showed a blue-shift to 680 nm, and was recovered after subsequent exposure to air. Si–O–H complexes were suggested to be responsible for this red luminescence. The irreversible decrease of PL intensity due to oxygen adsorption was speculated to be caused by the modification of chemical bonds on the surface. In the case of nitrogen adsorption, the PL change was attributed to the surface charging during adsorption.  相似文献   

8.
SiO2 thin films containing Si1-xGex quantum dots (QDs) are prepared by ion implantation and annealing treatment. The photoluminescence (PL) and microstructural properties of thin films are investigated. The samples exhibit strong PL in the wavelength range of 400-470 nm and relatively weak PL peaks at 730 and 780 nm at room temperature. Blue shift is found for the 400-nm PL peak, and the intensity increases initially and then decreases with the increase of Ge-doping dose. We propose that the 400-470 nm PL band originates from multiple luminescence centers, and the 730- and 780-nm PL peaks are ascribed to the Si=O and GeO luminescence centers.  相似文献   

9.
《中国物理 B》2021,30(7):75201-075201
We report an approach to the rapid, one-step, preparation of a variety of wide-bandgap silicon carbide/graphene nanosheet(Si C/GNSs) composites by using a high-density helicon wave plasma(HWP) source. The microstructure and morphology of the Si C/GNSs are characterized by using scanning electron microscopy(SEM), Raman spectroscopy, x-ray diffraction(XRD), x-ray photoelectron spectroscopy(XPS), and fluorescence(PL). The nucleation mechanism and the growth model are discussed. The existence of Si C and graphene structure are confirmed by XRD and Raman spectra.The electron excitation temperature is calculated by the intensity ratio method of optical emission spectroscopy. The main peak in the PL test is observed at 420 nm, with a corresponding bandgap of 2.95 e V that indicates the potential for broad application in blue light emission and ultraviolet light emission, field electron emission, and display devices.  相似文献   

10.
The photoluminescence (PL) characteristics of co-sputtered Ge–Si duplex nanocrystal films were examined under excitation by a 325-nm HeCd laser, combined with Raman and Fourier-transform infrared reflection spectra analysis. A broad visible PL spectrum from the as-deposited Ge–Si nanocrystal films was observed in the wavelength range 350–700 nm. Basically, the PL spectrum can be considered to consist of two distinct parts originating from different emission mechanisms: (i) the spectrum in the range 350–520 nm, consisting of characteristic double peaks at 410 and 440 nm with PL intensities decreasing after vacuum annealing, probably due to vacancy defects in Si nanocrystals; and (ii) the spectrum in the range 520–700 nm, consisting of a characteristic peak at 550 nm with a PL intensity not affected by vacuum annealing, probably due to Ge-related interfacial defects. No size dependence of PL peak energy expected from quantum confinement effects was observed in the wavelength range investigated. However, with an increase of crystal size, the PL peak intensity in the blue zone decreased. The PL intensity is found to be strongly affected by silicon concentration. A film heated in air has a different PL mechanism from the as-deposited and vacuum-annealed films. PACS 78.67.Bf; 81.05.Cy; 81.15.Cd  相似文献   

11.
Er/Yb共掺硅酸盐玻璃的光致发光   总被引:3,自引:0,他引:3       下载免费PDF全文
李善锋  张庆瑜 《物理学报》2005,54(11):5462-5467
采用固相反应方法,制备了Er3+离子浓度为0.5 at.%,Yb掺杂浓度范围为0.0— 6.0 at.%的Er/Yb共掺激光玻璃,并对激光玻璃的吸收光谱和光致荧光光谱进行了分析.研究 结果显示,Yb3+掺杂对Er3+在980 nm附近的吸收起到了非常显著的 增强作用.在 980 nm的激光抽运下,激光玻璃在1530 nm处的光致发光强度随着Yb离子浓度 的增加而先增大后减小, 当Yb3+离子浓度为Er3+离子浓度6倍时光 致发光强度达到最大值.同时还发现了Yb3+对Er3+的光致荧光光谱 的展宽作用,并讨论了荧光光谱的展宽机理. 关键词: Er/Yb共掺玻璃 光致发光 吸收光谱  相似文献   

12.
射频磁控溅射法制备ZnO薄膜的发光特性   总被引:17,自引:5,他引:12  
利用射频磁控溅射法在硅衬底上制备出具有(002)择优取向的氧化锌薄膜,用波长为300nm的光激发,观察到在446nm处有一强的光致发光峰,它来自于氧空位浅施主能级上的电子到价带上的跃迁。并讨论了发光峰与氧压的关系以及退火对它的影响,且给出了解释。  相似文献   

13.
Light soaking in air rapidly decreases photoluminescence (PL) of porous silicon (PS) and increases electron spin resonance (ESR) signal. In vacuum, a short light exposure (<2700 s) increases PL and decreases ESR, but longer exposures again degrade the PL. We could arrest the light-induced degradation over long periods by applying a thin polymer coating, which resulted in constant PL and ESR intensities. The PL intensity of coated PS is comparable to the PL intensity of a fresh PS sample in air. FTIR spectrum suggests new bond formations at the PS/polymer interface that may be responsible for PL stability.  相似文献   

14.
有机薄膜在平面光学微腔中的光致发光特性   总被引:2,自引:0,他引:2  
本文研究了有机薄膜在平面光学微腔中的光致发光特性。有机光学微脸以多层介质膜和金属银分别作为反射镜,8-羟基喹啉铝(Alq)为发光层。Alq薄膜的荧光峰位于519nm,谱线的半高全宽为90nm。微腔的荧光峰位于530nm,谱线的半高全宽窄化至10nm。谐振波长处的发射强度提高了一个数量级。  相似文献   

15.
Some kinds of low-dimensional nanostructures can be formed by the irradiation of laser on a pure silicon sample and SiGe alloy sample. We have studied the photoluminescence (PL) of the hole-net structure of silicon and the porous structure of SiGe where the PL intensity at 706 nm and 725 nm wavelength increases obviously. The effect of intensity-enhancing in the PL peaks cannot be explained within the quantum confinement alone. We propose a mechanism on the increasing PL emission in the above structures, in which the trap state of the interface between SiO2 and nanocrystal plays an important role.   相似文献   

16.
The photoluminescence (PL) and optical properties of CdS nanoparticles prepared by the solid-state method at low temperature have been discussed. The effects of NaCl and anionic surfactant SDBS (sodium dodecylbenzene sulfonate) on the luminescent properties of CdS nanophosphors prepared using this method, without the inert gas or the H2S environment, were studied separately. The synthesized products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FESEM), and energy dispersive X-ray spectroscopy (EDAX). UV–VIS absorption and PL spectra were also studied. XRD studies confirmed the single-phase formation of CdS nanoparticles. TEM micrograph revealed the formation of nearly spherical nanoparticles with a diameter of 2.5 nm. The PL emission for the CdS shows the main peak at 560 nm with a shoulder at 624 nm, with an increase in the PL intensity after the addition of SDBS. The effect of Mn doping on PL intensity has also been investigated. The PL spectra show that the emission intensity decreases as the dopant concentration increases.  相似文献   

17.
We studied the growth of nanocrystalline silicon (nc-Si) thin film exhibiting a strong room temperature photoluminescence (PL) at 1.81–2.003 eV. The amorphous silicon was crystallized by Ni silicide mediated crystallization (Ni SMC) and then Secco-etched to exhibit the PL. The PL peak energy and intensity increase with increasing the metal density on the a-Si because of the reduction in the grain size down to 2 nm. The photoluminescence energy and peak intensity depend strongly on the Secco etch time because the grain size is reduced by etching the grain boundaries.  相似文献   

18.
Luminescence mechanism of ZnO thin film investigated by XPS measurement   总被引:1,自引:0,他引:1  
The effects of annealing environment on the luminescence characteristics of ZnO thin films that were deposited on SiO2/Si substrates by reactive RF magnetron sputtering were investigated by X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). An analysis of the O 1s peak of ZnO film revealed that the concentration of oxygen vacancies increased with the annealing temperature from 600 °C to 900 °C under an ambient atmosphere. The PL results demonstrated that the intensity of green light emission at 523 nm also increased with temperature. Under various annealing atmospheres, the analyses of PL indicated that only one emission peak (523 nm) was obtained, indicating that only one class of defect was responsible for the green luminescence. The green light emission was strongest and the concentration of oxygen vacancies was highest when the ZnO film was annealed in ambient atmosphere at 900 °C. The results in this investigation show that the luminescence mechanism of the emission of green light from a ZnO thin film is associated primarily with oxygen vacancies. PACS 81.15.Cd; 81.40.Ef; 78.55.-m; 78.55.Et  相似文献   

19.
Two types of recording media possessing nanodot structures were investigated. The media were prepared by an artificially assisted self-assembling (AASA) method, which includes simple nanopatterning using a nanoimprint and fine nanopatterning using self-assembling organic molecules. One type of recording media is circumferential magnetic patterned media prepared on a 2.5-in.-diam glass plate. A Ni master disk possessing spiral patterns with 60-250 nm width lands and a 400 nm width groove was pressed to a resist film on a CoCrPt film to transfer the spiral patterns. A diblock copolymer solution was cast into the obtained grooves, and then annealed to prepare self-assembling dot structures aligned along the grooves. According to the dot patterns, the lower magnetic films were patterned by ion milling to yield patterned media with 40 nm diameter. We have also prepared FePt dot media with high magnetic anisotropy for near-field and magnetic-field hybrid recording aiming at more than 1 Tbin.2 density. A Ni stamp disk with aligned dot structures was also prepared by the AASA method to produce patterned media at the lowest cost. The other type of media was organic patterned media for X-Y type near-field optical storage. Bulky dye molecules were evaporated in vacuum to produce self-assembling amorphous nanodots. The dots were arranged by the AASA method, i.e., according to the polymethylmethacrylate film hole arrays or chemically patterned surface.  相似文献   

20.
In this letter, we present results of photoluminescence (PL) emission from single-layer and multilayer InAs self-organized quantum dots (QDs), which were grown on (001) InP substrate. The room temperature PL peak of the single-layer QDs locates at 1608 nm, and full width at half-maximum (FWHM) of the PL peak is 71 meV. The PL peak of the multilayer QDs locates at 1478 nm, PL intensity of which is stronger than that of single-layer QDs. The single-layer QD PL spectra also display excited state emission and state filling as the excitation intensity is increased. Low temperature PL spectra show a weak peak between the peaks of QDs and wetting layer (WL), which suggests the recombination between electrons in the WL and holes in the dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号