首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We discuss the fermion stars, the self-gravitating systems of Fermi gases, as possible gravitational lenses. It is supposed that the fermions interact with themselves and other particles only by gravity, so they are the candidates of dark matter. We calculate Einstein deflection angles, study the image configurations, and calculate the magnification factors for a number of fermion stars that range from strong relativistic configurations to nonrelativistic ones. We find that typically there are three images, one Einstein ring and one radial critical curve for both cases. Two of the images are within the Einstein ring, and the other is outside, which may be very far. All these lensing characteristics can help to identify fermion stars as potential lensing objects, thus might give direct evidence that dark fermion stars exist in the universe.  相似文献   

2.
Weak gravitational lensing is rapidly becoming one of the principal probes of dark matter and dark energy in the universe. In this brief review we outline how weak lensing helps determine the structure of dark matter halos, measure the expansion rate of the universe, and distinguish between modified gravity and dark energy explanations for the acceleration of the universe. We also discuss requirements on the control of systematic errors so that the systematics do not appreciably degrade the power of weak lensing as a cosmological probe.  相似文献   

3.
For a general class of analytic f(R)-gravity theories, we discuss the weak field limit in view of gravitational lensing. Though an additional Yukawa term in the gravitational potential modifies dynamics with respect to the standard Newtonian limit of General Relativity, the motion of massless particles results unaffected thanks to suitable cancellations in the post-Newtonian limit. Thus, all the lensing observables are equal to the ones known from General Relativity. Since f(R)-gravity is claimed, among other things, to be a possible solution to overcome for the need of dark matter in virialized systems, we discuss the impact of our results on the dynamical and gravitational lensing analyses. In this framework, dynamics could, in principle, be able to reproduce the astrophysical observations without recurring to dark matter, but in the case of gravitational lensing we find that dark matter is an unavoidable ingredient. Another important implication is that gravitational lensing, in the post-Newtonian limit, is not able to constrain these extended theories, since their predictions do not differ from General Relativity.  相似文献   

4.
To test modified Newtonian dynamics (MOND) on galactic scales, we study six strong gravitational lensing early-type galaxies from the CASTLES sample. Comparing the total mass (from lensing) with the stellar mass content (from a comparison of photometry and stellar population synthesis), we conclude that strong gravitational lensing on galactic scales requires a significant amount of dark matter, even within MOND. On such scales a 2 eV neutrino cannot explain the excess of matter in contrast with recent claims to explain the lensing data of the bullet cluster. The presence of dark matter is detected in regions with a higher acceleration than the characteristic MOND scale of approximately 10(-10) m/s(2). This is a serious challenge to MOND unless lensing is qualitatively different [possibly to be developed within a covariant, such as Tensor-Vector-Scalar (TeVeS), theory].  相似文献   

5.
The mystery of dark energy suggests that there is new gravitational physics on long length scales. Yet light degrees of freedom in gravity are strictly limited by Solar System observations. We can resolve this apparent contradiction by adding a Galilean-invariant scalar field to gravity. Called Galileons, these scalars have strong self-interactions near overdensities, like the Solar System, that suppress their dynamical effect. These nonlinearities are weak on cosmological scales, permitting new physics to operate. In this Letter, we point out that a massive-gravity-inspired coupling of Galileons to stress energy can enhance gravitational lensing. Because the enhancement appears at a fixed scaled location for dark matter halos of a wide range of masses, stacked cluster analysis of weak lensing data should be able to detect or constrain this effect.  相似文献   

6.
The standard cosmology is based on general relativity (GR) and includes dark matter and dark energy and predicts a fixed relationship between the gravitational potentials responsible for gravitational lensing and the matter overdensity. Alternative theories of gravity often make different predictions. We propose a set of measurements which can test this relationship, thereby distinguishing between dark energy or matter models and models in which gravity differs from GR. Planned surveys will be able to measure E(G), an observational quantity whose expectation value is equal to the ratio of the Laplacian of the Newtonian potentials to the peculiar velocity divergence, to percent accuracy. This will easily separate alternatives such as the cold dark matter model with a cosmological constant, Dvali-Gabadadze-Porrati, TeVeS, and f(R) gravity.  相似文献   

7.
Pixel lensing     
Pixel lensing is gravitational microlensing of unresolved stars. The main target explored up to now has been the nearby galaxy of Andromeda, M31. The scientific issues of interest are the search for dark matter in form of compact halo objects, the study of the characteristics of the luminous lens and source populations and the possibility of detecting extra-solar (and extra-galactic) planets. In the present work we intend to give an updated overview of the observational status in this field.  相似文献   

8.
We constrain the lifetime of radiatively decaying dark matter in clusters of galaxies inspired by generic Kaluza-Klein axions, which have been invoked as a possible explanation for the solar coronal x-ray emission. These particles can be produced inside stars and remain confined by the gravitational potential of clusters. By analyzing x-ray observations of merging clusters, where gravitational lensing observations have identified massive, baryon poor structures, we derive the first cosmological lifetime constraint on this kind of particles of tau > or = 10(23) sec.  相似文献   

9.
In this article, we study the possibility of sustaining static and spherically symmetric traversable wormhole geometries admitting conformal motion in Einstein gravity, which presents a more systematic approach to search a relation between matter and geometry. In wormhole physics, the presence of exotic matter is a fundamental ingredient and we show that this exotic source can be dark energy type which support the existence of wormhole spacetimes. In this work we model a wormhole supported by dark energy which admits conformal motion. We also discuss the possibility of the detection of wormholes in the outer regions of galactic halos by means of gravitational lensing. Studies of the total gravitational energy for the exotic matter inside a static wormhole configuration are also performed.  相似文献   

10.
Weak gravitational lensing of background galaxies by intervening matter directly probes the mass distribution in the Universe. This distribution is sensitive to both the dark energy and neutrino mass. We examine the potential of lensing experiments to measure features of both simultaneously. Focusing on the radial information contained in a future deep 4000 deg(2) survey, we find that the expected (1-sigma) error on a neutrino mass is 0.1 eV, if the dark-energy parameters are allowed to vary. The constraints on dark-energy parameters are similarly restrictive, with errors on w of 0.09.  相似文献   

11.
Using very long baseline interferometry we have searched a sample of 300 compact radio sources for examples of multiple imaging produced by gravitational lensing; no multiple images were found with separations in the angular range 1.5--50 milliarcsec. This null result allows us to place a limit on the cosmological abundance of intergalactic supermassive compact objects in the mass range approximately 10(6)M( middle dot in circle) to approximately 10(8)M( middle dot in circle); such objects cannot make up more than approximately 1% of the closure density ( 95% confidence). A uniformly distributed population of supermassive black holes forming soon after the big bang does not, therefore, contribute significantly to the dark matter content of the Universe.  相似文献   

12.
If the dark matter consists of primordial black holes (PBHs), we show that gravitational lensing of stars being monitored by NASA's Kepler search for extrasolar planets can cause significant numbers of detectable microlensing events. A search through the roughly 150,000 light curves would result in large numbers of detectable events for PBHs in the mass range 5×10(-10) M(⊙) to 10(-4) M(⊙). Nondetection of these events would close almost 2 orders of magnitude of the mass window for PBH dark matter. The microlensing rate is higher than previously noticed due to a combination of the exceptional photometric precision of the Kepler mission and the increase in cross section due to the large angular sizes of the relatively nearby Kepler field stars. We also present a new formalism for calculating optical depth and microlensing rates in the presence of large finite-source effects.  相似文献   

13.
Based on the geodesic equation in a static spherically symmetric metric we discuss the rotation curve and gravitational lensing. The rotation curve determines one function in the metric without assuming Einstein’s equations. Then lensing is considered in the weak field approximation of general relativity. From the null geodesics we derive the lensing equation. The gravitational potential U(r) which determines the lensing is directly give by the rotation curve U(r) = −v 2(r). This allows to test general relativity on the scale of galaxies where dark matter is relevant.  相似文献   

14.
We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4σ detection of the lensing signal measures the amplitude of density fluctuations to 12%.  相似文献   

15.
Localized solutions of an axion-like scalar model with a periodic self-interaction are analyzed as a model of dark matter halos. It is shown that such a cold Bose–Einstein type condensate can provide a substantial contribution to the observed rotations curves of galaxies, as well provide a soliton type interpretation of the dark matter ‘bullets’ observed via gravitational lensing in merging clusters.  相似文献   

16.
A mass function of small-scale dark matter clumps is calculated. We take into account the tidal destruction of clumps at early stages of structure formation starting from a time of clump detachment from the Universe expansion. Only a small fraction of these clumps, ∼0.1%, in each logarithmic mass interval Δ log M ∼ 1 survives the stage of hierarchical clustering. We calculate the probability of surviving of the remnants of dark matter clumps in the Galaxy by modelling the tidal destruction of the small-scale clumps by disk and stars. It is demonstrated that a substantial fraction of clump remnants may survive through the tidal destruction during the lifetime of the Galaxy if a radius of core is rather small. The resulting mass spectrum of survived clumps is extended down to the mass of the core of the cosmologically produced clumps with a minimal mass. The survived dense remnants of tidally destructed clumps provides a large contribution to the annihilation signal in the Galaxy. We describe the anisotropy of dark matter clump distribution caused by tidal destruction of clumps in the Galactic disk. A corresponding annihilation of dark matter particles in small-scale clumps produces the anisotropic gamma-ray signal with respect to the Galactic disk.  相似文献   

17.
It is argued that, in models where the gravitational coupling is scaledependent, predictions concerning weak gravitational lensing and shear are essentially similar to the ones derived from General Relativity. This is consistent with recent negative results of observations of the MS1224, CL2218 and A1689 systems aimimg to infer from those methods the presence of dark matter. It is shown, however, that the situation is quite different when an analysis based on the Cosmic Virial Theorem is concerned.  相似文献   

18.
19.
Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening matter. The distortions are due to fluctuations in the gravitational potential, and are directly related to the distribution of matter and to the geometry and dynamics of the Universe. As a consequence, weak gravitational lensing offers unique possibilities for probing the Dark Matter and Dark Energy in the Universe. In this review, we summarise the theoretical and observational state of the subject, focussing on the statistical aspects of weak lensing, and consider the prospects for weak lensing surveys in the future.  相似文献   

20.
Light propagating in an inhomogeneous medium does not travel in straight lines. Light rays wander; they are focused, magnified and dispersed as they travel through an inhomogeneous medium. Such deflections are familiar to physicists. They are the stuff of optics. On cosmic scales light is 'deflected' in a more profound way, tracing inhomogeneities in the underlying space-time. The meandering of light rays as they propagate through the Universe encodes unique information about variations in the space-time metric. General relativity tells us these variations are impressed on the metric by inhomogeneities in the matter distribution. As a result, this 'gravitational lensing' provides information about the distribution of mass in the Universe. In this work we review briefly the main features of gravitational lensing, with an emphasis on observable effects. Remarkable progress has been made in lensing observations since 1990. We discuss some aspects of this rapid development, commenting especially on astrophysical topics where lensing studies have had a major impact. We suggest that gravitational lensing is now a standard part of the astrophysical toolkit, akin in some ways to photometry. We conclude with a discussion of areas in which lensing studies will have a strong impact in years to come, and comment on technical requirements for these future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号