首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequence-selective DNA cleavage by a chimeric metallopeptide   总被引:3,自引:0,他引:3  
A chimeric metallopeptide derived from the sequences of two structurally superimposable motifs was designed as an artificial nuclease. Both DNA recognition and nuclease activity have been incorporated into a small peptide sequence. P3W, a 33-mer peptide comprising helices alpha2 and alpha3 from the engrailed homeodomain and the consensus EF-hand Ca-binding loop binds one equivalent of lanthanides or calcium and folds upon metal binding. The conditional formation constants (in the presence of 50 mM Tris) of P3W for Eu(III) (K(a) = (2.1 +/- 0.1) x 10(5) M(-1)) and Ce(IV) (K(a) = (2.6 +/- 0.1) x 10(5) M(-1)) are typical of isolated EF-hand peptides. Circular dichroism studies show that 1:1 CeP3W is 26% alpha-helical and EuP3W is up to 40% alpha-helical in the presence of excess metal. The predicted helicity of the folded peptide based on helix length and end effects is about 50%, showing the metallopeptides are significantly folded. EuP3W has considerably more secondary structure than our previously reported chimeras (Welch, J. T.; Sirish, M.; Lindstrom, K. M.; Franklin, S. J. Inorg. Chem. 2001, 40, 1982-1984). Eu(III)P3W and Ce(IV)P3W nick supercoiled DNA at pH 6.9, although EuP3W is more active at pH 8. CeP3W cleaves linearized, duplex DNA as well as supercoiled plasmid. The cleavage of a 5'-(32)P-labeled 121-mer DNA fragment was followed by polyacrylamide gel electrophoresis. The cleavage products are 3'-OPO(3) termini exclusively, suggesting a regioselective or multistep mechanism. In contrast, uncomplexed Ce(IV) and Eu(III) ions produce both 3'-OPO(3) and 3'-OH, and no evidence of 4'-oxidative cleavage termini with either metal. The complementary 3'-(32)P-labeled oligonucleotide experiment also showed both 5'-OPO(3) and 5'-OH termini were produced by the free ions, whereas CeP3W produces only 5'-OPO(3) termini. In addition to apparent regioselectivity, the metallopeptides cut DNA with modest sequence discrimination, which suggests that the HTH motif binds DNA as a folded domain and thus cleaves selected sequences. The de novo artificial nuclease LnP3W represents the first small, underivatized peptide that is both active as a nuclease and sequence selective.  相似文献   

2.
ESI mass spectrometry was used to investigate the europium complexation by tridentate ligands L identical with 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)-pyridines (DATP) that have shown unique separation properties of actinides(III) from lanthanides(III) in nitric acid solutions. Complexes of three ligands, namely methyl (DMTP), n-propyl (DnPTP), and iso-propyl (DiPTP), have been investigated in acidic solutions to check the aqueous-phase stability of Eu(L)(3)(3+) ions identified previously in the solid state. The data obtained show, first, the presence of stable Eu(L)(3)(3+) ions with DnPTP (log beta(3)(app) = 12.0 +/- 0.5) and DiPTP (log beta(3)(app) = 14.0 +/- 0.6) in methanol/water (1:1 v/v) solutions under pH range 2.8-4.6 and, second, a mechanism whereby alkyl moieties contribute to a self-assembling process leading to the formation of Eu(L)(3)(3+) ions. Other complexes such as Eu(L)(2)(3+) ions are only observed for DnPTP (log beta(2)(app) = 6.7 +/- 0.5) and DMTP (log beta(2)(app) = 6.3 +/- 0.1) and Eu(L)(3+) only for DMTP (log beta(1)(app) = 2.9 +/- 0.2). The log beta(n)(app) values for the Eu(L)(n)(3+) (n = 1-3) complexes were determined at pH 2.8. Better insight was given in this study concerning the role of the hydrophobic exterior of the ligands for the design of a new range of extracting agents.  相似文献   

3.
Sulfate complexation of lanthanides is of great interest for predicting speciation of radionuclides in natural environments. The formation of LaSO4+(aq) in HNO3/H2SO4 aqueous solutions of low ionic strength (I) was studied by nanoelectrospray ionization mass spectrometry (nanoESI-MS). Several gaseous species containing LaSO4+ were detected. The formation constant of LaSO4+(aq) was determined and extrapolated to I = 0 (log = 3.5 +/- 0.3) by using a simple specific ion interaction theory (SIT) formula. This value supports the potential of nanoESI-MS for the study of kinetically labile species. The species La(SO4)(2-) was also detected. In addition, time-resolved laser-induced luminescence (TRLIL) was used to study Eu(III) speciation under ionic conditions of 0.02-0.05 M H+ (H2SO4/HClO4) and 0.4-2.0 M Na+ (Na2SO4/NaClO4). The data were interpreted with the species EuSO4+ (log = 3.7(8) +/- 0.1) and Eu(SO4)(2-) (log = 1.5 +/- 0.2). For extrapolating to I = 0, all of the major ions were taken into account through several SIT ion-pair parameters, epsilon. Most of the epsilon values were estimated by analogy to known parameters for similar ion-pair interactions using linear correlations, while epsilon(Eu)3+,SO4(2-) = 0.8(6) +/- 0.5 was fitted to the experimental data because, to date, SIT coefficients between multicharged species are not reported. The formation constants obtained here confirm some of those previously measured for Ln(III) and An(III) by various experimental techniques, and conversely do not give credit to the idea that in equilibrium conditions TRLIL and other spectroscopic techniques would provide stability constants of only inner-sphere complexes. The fluorescence lifetimes measured for EuSO4+ and Eu(SO4)(2-) were consistent with the replacement of one H2O molecule in the first coordination sphere of Eu3+ for each added SO4(2-) ligand, suggesting a monodentate SO4(2-) coordination.  相似文献   

4.
Harris KL  Lim S  Franklin SJ 《Inorganic chemistry》2006,45(25):10002-10012
In the emerging field of biomolecular design, the introduction of metal-binding sites into loop or turn regions of known protein scaffolds has been utilized to create unique metalloprotein and metallopeptide systems for study. This Forum Article highlights examples of the modular-turn-substitution approach to design and the range of structural and mechanistic questions to which this tool can be applied. Examples from the authors' laboratory are given to show that lanthanide-binding metallopeptides, and now a full metallohomeodomain, can be generated by modular substitution of a Ca-binding EF-hand loop into the unrelated scaffold, the engrailed helix-turn-helix motif. We have previously shown that these peptides bind trivalent Ln(III) ions and promote DNA and phosphate hydrolysis, the targeted function. Here, a series of chimeric peptides are presented that differ only in the ninth loop position [given in parentheses; Peptides P3N (Asn), P3E (Glu), P3A (Ala), and P3W(D) (Asp]. This residue, a putative second-shell ligand stabilizing a coordinated water, was found to influence not only metal affinity but also peptide folding. The affinity for Tb(III) was determined by Trp-Tb fluorescence resonance energy transfer and followed the order Ka = P3W(D) > P3A approximately P3E > P3N. However, circular dichroism (CD) titrations with EuCl3 showed that only P3W(D) and P3N folded to any extent upon metal binding, indicating that the Asp/Asn side chains stabilize the central loop structure and thus propagate folding of the peripheral helices, whereas neither Ala nor Glu appears to be interacting with the metal to organize the loop. Finally, we investigated the longer range context of a given loop substitution by cloning and expressing a lanthanide-binding homeodomain (C2), whose loop insertion sequence is analogous to that of peptide P3W(D). We find by CD that apo-C2 has a significant helical structure (approximately 25% alphahelicity), which increases further upon the addition of Tb(III) (approximately 32% alpha helicity). The protein's Tb(III) affinity is similar to that of the chimeric peptides. However, unlike previously reported metallopeptides, we find that EuC2 does not appreciably promote phosphate or DNA cleavage, which suggests a difference in metal accessibility in the context of the full domain. We have demonstrated that substituting beta turns with metal-binding turns does not necessarily require homologous parental scaffolds or small flexible peptides but rather relies on the structural similarity of the motifs flanking the turn.  相似文献   

5.
The complex formation between Eu(III) and 5-sulfosalicylate, (HSSA)(2-), has been investigated by means of TRLIFS (time resolved laser induced fluorescence spectroscopy). The concentration of free ligand in the solution was determined from the fluorescence emission of 5-sulfosalicylate by subtracting the dynamic quenching effect from the observed quenching of fluorescence emission by means of lifetime analysis, and the stoichiometry and the corresponding formation constants were obtained. A carboxylate coordinated complex, Eu(HSSA)(+), and also a chelate complex, Eu(SSA), were identified, and the formation constants of the complex Eu(HSSA)(2+) for the reaction, Eu(3+)+ HSSA(2-)[rightward arrow] Eu(HSSA)(+), and the deprotonation constant of the chelating reaction, Eu(HSSA)(+)--> Eu(SSA)+ H(+), were calculated at log beta(1,1)= 1.79 and log K'=-5.78, respectively. TRLIFS using the fluorescence emission from Eu(III) was performed in order to determine the number of coordination waters of the complex Eu(HSSA)(2+). The quenching of the Eu(III) fluorescence caused by (SSA)(3-) disturbed the lifetime analysis of the 'intrinsic lifetime' of Eu(III) in Eu(HSSA)(2+), however the problem was successfully solved by the analysis of emission intensity and lifetime, and the formulation of the complex was determined as [Eu(HSSA)8H(2)O](2+) with the explicit involvement of the coordinated waters.  相似文献   

6.
Two new tetraazamacrocyclic ligands are designed with the aim of sensitizing the luminescence of Tb(III) and Eu(III) ions in water: L5 [1,4,7,10-tetrakis[N-(phenacyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane] and L6 [1,4,7,10-tetrakis[N-(4-phenylphenacyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane]. These ligands react with lanthanide trifluoromethanesulfonates to yield stable 1:1 complexes in water (log K = 12.89 +/- 0.15 for EuL5). X-ray diffraction on [Tb(L5)(H(2)O)](CF(3)SO(3))(3) (P1 macro, a = 13.308(3) A, b = 14.338(3) A, c = 16.130(3) A, alpha = 101.37(3) degrees, beta = 96.16(3) degrees, gamma = 98.60(3) degrees ) shows the Tb(III) ion lying on a C(4) axis and being 9-coordinate, with one water molecule bound in its inner coordination sphere. The absolute quantum yields are determined in aerated water for the complexes formed with ions used in fluoroimmunoassays (Ln = Sm, Eu, Tb, and Dy). Large values are found for [Tb(H(2)O)(L5)](3+) and [Eu(H(2)O)(L6)](3+), in line with the molecular design of the receptors: 23.1% and 24.7%, respectively. The intense luminescence of these ions results from efficient intersystem crossing and L --> Ln energy transfer processes, as well as from a suitable shielding of the emitting ions from radiationless deactivation.  相似文献   

7.
Two novel ligands containing pyridine units and phosphonate pendant arms, with ethane-1,2-diamine (L2) or cyclohexane-1,2-diamine (L3) backbones, have been synthesized for Ln complexation. The hydration numbers obtained from luminescence lifetime measurements in aqueous solutions of the Eu(III) and Tb(III) complexes are q = 0.6 (EuL2), 0.7 (TbL2), 0.8 (EuL3), and 0.4 (TbL3). To further assess the hydration equilibrium, we have performed a variable-temperature and -pressure UV-vis spectrophotometric study on the Eu(III) complexes. The reaction enthalpy, entropy, and volume for the hydration equilibrium EuL <--> EuL(H2O) were calculated to be DeltaH degrees = -(11.6 +/- 2) kJ mol(-1), DeltaS degrees = -(34.2 +/- 5) J mol(-1) K(-1), and = 1.8 +/- 0.3 for EuL2 and DeltaH degrees = -(13.5 +/- 1) kJ mol(-1), DeltaS degrees = -(41 +/- 4) J mol(-1) K(-1), and = 1.7 +/- 0.3 for EuL3, respectively. We have carried out variable-temperature 17O NMR and nuclear magnetic relaxation dispersion (NMRD) measurements on the GdL2(H2O)q and GdL3(H2O)q systems. Given the presence of phosphonate groups in the ligand backbone, a second-sphere relaxation mechanism has been included for the analysis of the longitudinal (17)O and (1)H NMR relaxation rates. The water exchange rate on GdL2(H2O)q, = (7.0 +/- 0.8) x 10(8) s(-1), is extremely high and comparable to that on the Gd(III) aqua ion, while it is slightly reduced for GdL3(H2O)q, = (1.5 +/- 0.1) x 10(8) s(-1). This fast exchange can be rationalized in terms of a very flexible inner coordination sphere, which is slightly rigidified for L3 by the introduction of the cyclohexyl group on the amine backbone. The water exchange proceeds via a dissociative interchange mechanism, evidenced by the positive activation volumes obtained from variable-pressure 17O NMR for both GdL2(H2O)q and GdL3(H2O)q (DeltaV = +8.3 +/- 1.0 and 8.7 +/- 1.0 cm(3) mol(-1), respectively).  相似文献   

8.
A new tripodal, hydroxyl-rich ligand, tris{2-[(3,4-dihydroxybenzylidene)imino]ethyl}amine (L), and its complexes with lanthanide nitrates were synthesized. These complexes which are stable in air with the general formula of [LnL(NO(3))(2)]NO(3).H(2)O (Ln=La, Sm, Eu, Gd, Y) were characterized by molar conductivity, elemental analysis, IR spectra and thermal analysis. The NO(3)(-) groups coordinated to lanthanide mono-dentately, and the coordination number in these complexes may be 8. The interaction of complexes with DNA were investigated by ultraviolet and fluorescent spectra, which showed that the binding mode of complexes with DNA was intercalation, and the binding affinity with DNA were La(III) complex>Sm(III) complex>Eu(III) complex>Gd(III) complex>Y(III) complex. Based on these results, it can be shown that the La(III)complex is promising candidate for therapeutic reagents and DNA probes.  相似文献   

9.
The incorporation of lanthanide ions into polyoxometalates may be a unique approach to generate new luminescent, magnetic, and catalytic functional materials. To realize these new applications of lanthanide polyoxometalates, it is imperative to understand the solution speciation chemistry and its impact on solid-state materials. In this study we find that the aqueous speciation of europium(III) and the trivacant polyoxometalate, PW9O34 9-, is a function of pH, countercation, and stoichiometry. For example, at low pH, the lacunary (PW11O39)7- predominates and the 1:1 Eu(PW11O39)4-, 2, forms. As the pH is increased, the 1:2 complex, Eu(PW11O39)2 11- species, 3, and (NH4)22[(Eu2PW10O38)4(W3O8(H2O)2(OH)4].44H2O, a Eu8 hydroxo/oxo cluster, 1, form. Countercations modulate this effect; large countercations, such as K+ and Cs+, promote the formation of species 3 and 1. Addition of Al(III) as a counterion results in low pH and formation of [Eu(H2O)3(alpha-2-P2W17O61)]2, 4, with Al(III) counterions bound to terminal W-O bonds. The four species observed in these speciation studies have been isolated, crystallized, and characterized by X-ray crystallography, solution multinuclear NMR spectroscopy, and other appropriate tech-niques. These species are 1, (NH4)22[(Eu2PW10O38)4(W3O8(H2O)2(OH)4].44H2O (P; a=20.2000(0), b=22.6951(6), c=25.3200(7) A; alpha=65.6760(10), beta=88.5240(10), gamma=86.0369(10) degrees; V=10550.0(5) A3; Z=2), 2, Al(H3O)[Eu(H2O)2PW11O34].20H2O (P, a=11.4280(23), b=11.5930(23), c=19.754(4) A; alpha=103.66(3), beta=95.29(3), gamma=102.31(3) degrees; V =2456.4(9) A3; Z=2), 3, Cs11Eu(PW11O34)2.28H2O (P; a=12.8663(14), b=19.8235(22), c=21.7060(23) A; alpha=114.57(0), beta=91.86(0), gamma=102.91(0) degrees ; V=4858.3(9) A3; Z=2), 4, Al2(H3O)8[Eu(H2O)3(alpha-2-P2W17O61)]2.29H2O (P; a=12.649(6), b=16.230(8), c=21.518(9) A; alpha=111.223(16), beta=94.182(18), gamma=107.581(17) degrees ; V=3842(3) A3; Z=1).  相似文献   

10.
The results of a detailed solid state and solution structural study of the Fe(III) bis-mida complex [Fe(III)(mida)(2)]- (mida = N-methyl-iminodiacetate) are reported. The structure of the sodium salt Na[Fe(mida)2][NaClO4]2.3H2O (1) was determined by single-crystal X-ray analysis. The complex anion in 1 contains a six-coordinate Fe(III) centre bound to two tridentate mida ligands arranged in the meridional configuration, and the mer Fe(III)N2O4 chromophore shows a high degree of distortion from regular octahedral symmetry. Raman- and UV/VIS/NIR spectroscopic measurements showed that no gross changes take place in the Fe(III) coordination sphere upon redissolution in water. Quantum chemical calculations of all three possible configurations of the [Fe(mida)2]- complex ion in the gas phase support the finding that the mer isomer is more stable than the u-fac (cis) and s-fac (trans) isomers. Redox potential measurements of the Fe(III/II)(mida) couple in dependence of pH led to the following values for the equilibrium contants: log beta(III)(101) = 11.98 +/- 0.05, log beta(III)(102) = 20.49 +/- 0.01, pK(III)(a1 OH) = 7.81; log beta(II)(101) = 6.17 +/- 0.01, log beta(II)(102) = 11.39 +/- 0.01.  相似文献   

11.
Some metal-ion-complexing properties of the ligand 2-(pyrid-2'-yl)-1,10-phenanthroline (MPP) are reported. MPP is of interest in that it is a more preorganized version of 2,2';6,2'-terpyridine (tpy). Protonation constants (pK(1) = 4.60; pK(2) = 3.35) for MPP were determined by monitoring the intense π-π* transitions of 2 × 10(-5) M solutions of the ligand as a function of the pH at an ionic strength of 0 and 25 °C. Formation constants (log K(1)) at an ionic strength of 0 and 25 °C were obtained by monitoring the π-π* transitions of MPP titrated with solutions of the metal ion, or 1:1 solutions of MPP and the metal ion were titrated with acid. Large metal ions such as Ca(II) or La(III) showed increases of log K(1) of about 1.5 log units compared to that of tpy. Small metal ions such as Zn(II) and Ni(II) showed little increase in log K(1) for MPP compared to the tpy complexes, which is attributed to the presence of five-membered chelate rings in the MPP complexes, which favor large metal ions. The structure of [Cd(MPP)(H(2)O)(NO(3))(2)] (1) is reported: monoclinic, P2(1)/c, a = 7.4940(13) ?, b = 12.165(2) ?, c = 20.557(4) ?, β = 96.271(7)°, V = 1864.67(9) ?(3), Z = 4, and final R = 0.0786. The Cd in 1 is seven-coordinate, comprising the three donor atoms of MPP, a coordinated water, a monodentate, and a bidentate NO(3)(-). Cd(II) is a fairly large metal ion, with r(+) = 0.96 ?, slightly too small for coordination with MPP. The effect of this size matching in terms of the structure is discussed. Fluorescence spectra of 2 × 10(-7) M MPP in aqueous solution are reported. The nonprotonated MPP ligand fluoresces only weakly, which is attributed to a photoinduced-electron-transfer effect. The chelation-enhanced-fluorescence (CHEF) effect induced by some metal ions is presented, and the trend of the CHEF effect, which is Ca(II) > Zn(II) > Cd(II) ~ La(III) > Hg(II), is discussed in terms of factors that control the CHEF effect, such as the heavy-atom effect.  相似文献   

12.
Thiophenyl-derivatized nitrobenzoic acid ligands have been evaluated as possible sensitizers of Eu(III) and Tb(III) luminescence. The resulting solution and solid-state species were isolated and characterized by luminescence spectroscopy and X-ray crystallography. The Eu(III) complex with 2-nitro-3-thiophen-3-yl-benzoic acid, 1, crystallizes in the monoclinic space group C2/c with a = 28.569(3) A, b = 17.7726(18) A, c = 17.7073(18) A, beta= 126.849(2) degrees, and V = 7194.6(13) A3. The Tb(III) complex with this ligand, 2, is isostructural, and its cell parameters are a = 29.755(6) A, b = 18.123(4) A, c = 19.519(4) A, beta= 130.35(3) degrees, and V = 8021(3) A3. Eu(III) crystallizes with 3-nitro-2-thiophen-3-yl-benzoic acid as a triclinic complex, 3, in the space group P1 with a = 11.045(2) A, b = 12.547(3) A, c = 15.500(3) A, alpha = 109.06(3)degrees, beta = 94.79(3) degrees, gamma = 107.72(3) degrees. and V = 1893.5(7) A3. With the ligand 5-nitro-2-thiophen-3-yl-benzoic acid, Eu(III) yields another molecular compound, 4, triclinic P1, with a = 10.649(2) A, b = 14.009(3) A, c = 15.205(3) A, alpha= 112.15(3) degrees, beta = 100.25(3) degrees, gamma = 106.96(3) degrees, and V = 1900.5(7) A3. All compounds dissolve in water and methanol, and the methanolic solutions are luminescent. The solution species have a metal ion-to-ligand ratio of 1:1. The quantum yields have been determined to be in the range of 0.9-3.1% for Eu(III) and 4.7-9.8% for Tb(III). The highest values of these correspond to the most intense luminescence reported for Ln(III) solutions with this type of sensitizer. The lifetimes of luminescence are in the range of 248.3-338.9 micros for Eu(III) and 208.6-724.9 micros for Tb(III). The stability constants are in the range of log 11 = 2.73-4.30 for Eu(III) and 3.34-4.18 for Tb(III) and, along with the energy migration pathways, are responsible for the reported efficiency of sensitization.  相似文献   

13.
In this study the coordination structure and chemistry of Eu(III) and Cm(III) in the ionic liquid C(4)mimTf(2)N (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) was investigated by time-resolved laser fluorescence spectroscopy (TRLFS). The dissolution of 1 x 10(-2) M Eu(CF(3)SO(3))(3) and 1 x 10(-7) M Cm(ClO(4))(3) in C(4)mimTf(2)N leads to the formation of two species for each cation with fluorescence emission lifetimes of 2.5 +/- 0.2 ms and 1.0 +/- 0.3 ms for the Eu-species and 1.0 +/- 0.3 ms and 300.0 +/- 50 micros for the Cm-species. The interpretation of the TRLFS data indicates a comparable coordination for both the lanthanide and actinide cation in this ionic liquid. The quenching influence of Cu(II) on the fluorescence emission of Eu(III) and Cm(III) was also measured by TRLFS. While Cu(ii) does not quench the Cm(III) fluorescence emission in C(4)mimTf(2)N the Eu(III) fluorescence emission lifetime for both Eu-species in C(4)mimTf(2)N decreases with increasing Cu(II) concentration. Stern-Volmer constants were calculated (k(SV) = 1.54 x 10(6) M(-1) s(-1) and k(SV) = 2.70 x 10(6) M(-1)). By contrast, the interaction of Cu(II) with Eu(III) and Cm(III) in water leads to a quenching of both the lanthanide and actinide fluorescence. The calculated Stern-Volmer constants are 1.20 x 10(4) M(-1) s(-1) for Eu(III) and 1.27 x 10(4) M(-1) s(-1) for Cm(III). The investigations show, while the chemistry of trivalent lanthanides and actinides is similar in an aqueous system it is dramatically different in ionic liquids. This difference in chemical behavior may provide the opportunity for a separation of lanthanides and actinides with regard to the reprocessing of nuclear fuel.  相似文献   

14.
<正> C12H22O4Eu(NO3)3,Mr=568. 28,monoclinic, P21/n,a=7. 980(1) ,6= 17.226(2), c=14. 460(3) A,B=100.15(1) , V= 1956. 6A3,Z=4,Dc=1.929 g/cm3,F(000) = 1128. The structure was sieved by direct methods and Fourier synthesis, and refined by block-diagonal and full matrix least-squares method to a final R of 0. 055 for 2568 independent reflections of I>3a(I). The ten donor oxygen atoms in the crowm ether and NO3 groups are coordinated to central metal ion Eu(III) forming an irregular coordination polyhedron. The Eu(III) ion is out of the ether oxygen plane and the three nitrate groups are bidentately coordinated to the Eu (III) on the opposite side of the polyether. The average bond lengths of Eu-O(NO3) and Eu-O(ether) are 2. 491A and 2. 558A ,respectively.  相似文献   

15.
Oh SJ  Song KH  Whang D  Kim K  Yoon TH  Moon H  Park JW 《Inorganic chemistry》1996,35(13):3780-3785
Lanthanide(III) Cryptate (2.2.1) chlorides (Ln(2.2.1)Cl(3); Ln = La (1a), Ce(1b), and Eu(1c); (2.2.1) = 4,7,13,16,21-pentaoxa-1,10-diazabicyclo[8.8.5]tricosane) are effective for the catalytic hydrolysis of bis(4-nitrophenyl) phosphate. Kinetic studies reveal that the europium(III) complex (1c) catalyzes the hydrolysis to produce 6 equiv of 4-nitrophenol with a significant rate (k(1) = 1.5 x 10(-)(4) s(-)(1) at 0.40 mM) at pH 8.5 and 50 degrees C. The catalytic activity of the complexes is increased with decreasing the ionic size, i.e, La < Ce < Eu. While the use of hydrogen peroxide further increase the activity of 1b (k(1) = 1.6 x 10(-)(3) s(-)(1) at 0.40 mM), the presence of molecular oxygen does not affect the activity at all. Crystal of 1a.CH(3)OH([La(2.2.1)(Cl)(2)](Cl)(CH(3)OH)) belongs to the space group Pnma with a = 17.072(3) ?, b = 19.037(3) ?, c = 14.725(2) ?, V = 4786(1) ?(3), Z = 8, D(x)() = 1.691 g cm(-)(3), &mgr; = 21.7 cm(-)(1). The encryptated metal ion is nine-coordinated, and all the heteroatoms of the cryptate (2.2.1) ligand coordinate the metal center to form a bowl-shaped structure. Two coordinating chloride anions are located on the open face with a cis geometry. The existence of coordinated water to the europium(III) complex 1c in the aqueous solution was confirmed by time-resolved Eu(III) luminescence spectroscopy. From the decay constants in H(2)O and D(2)O, the numbers of coordinated water molecules (q) are found to be 3.02 at pH of 5.0. The above kinetic and spectroscopic observation are supportive of mechanisms in which the metal complexes act as a center for binding and activation as well as a source of nucleophilic metal hydroxides.  相似文献   

16.
Taylor PD 《Talanta》1995,42(6):845-850
The three overlapping pK(a) values of N,N',N'-tris[2-(3-hydroxy-2-oxo-1,2-dihydropyridin-1-yl)acetamido]ethylamine, a tripodal hexadentate chelator formed from three 3-hydroxy-2(1H)-pyridinone moieties amide linked to tris-(2-aminoethyl)amine, were determined by simultaneous spectrophotometric and potentiometric titration. The data was analysed by non-linear regression with constraints to deal with (a) the highly correlated absorptivities and (b) the highly correlated pK(a) values. The three pK(a) values were optimized first from the spectrophotometric data (absorbance vs. pH) by non-linear regression to a model in which the molar absorptivity of the ith species ((i)) was constrained by the correlation equation (i) = epsilon (0) + (epsilon (3) - epsilon (0))i 3 with i = 0, 1, 2, 3, where (3) and (0) represent the molar absorptivities of the most protonated and least protonated species, respectively. The molar absorbitivity of the four species defined by three pK(a) values is, therefore, linearly related to proton stoichiometry. The pK(a) values were then optimized from the potentiometric data (pH vs. titrant volume) by non-linear regression to a model in which the three pK(a) values were constrained by the correlation equation pK(a(i)) = pK(a(int)) + b(i - 1) + (i - 2)log(3) where i = 1, 2 or 3. This expresses the three pK(a) values in terms of only two optimizable parameters, the intrinsic site pK(a) (pK(a(int))) and the interaction energy between sites (b). The fixed term (i - 2)log(3) accounts for the statistical effect on the pK(a) values of three equivalent ionizable sites. The modified analytical derivatives required for optimization of these parameters by the Gauss-Newton-Marquardt algorithm and the merits of optimizing pK(a) values with these two correlation equations are discussed. The optimized pK(a) values were 9.31 +/- 0.01, 8.75 +/- 0.01 and 8.19 +/- 0.01. The separation between pK(a) values is 0.58 comprising 0.477 for the statistical effect and 0.081 for the interaction energy while the intrinsic site pK(a) is 8.672 +/- 0.005. The tertiary amine at the centre of the tripodal backbone has a pK(a) of 5.88 +/- 0.03.  相似文献   

17.
Manganese/ligand association dynamics were studied using a series of structurally related anionic phosphorus ester ligand probes [CH(3)OP(O)(X)(Y)(-), where X = CH(3)O, CH(3)CH(2), or H and Y = O, S, or BH(3)]. Reactions of the probe ions with Mn(H(2)O)(6)(2+) and a manganese(III) porphyrin (Mn(III)TMPyP(5+)) were studied in aqueous solution by paramagnetic (31)P NMR line-broadening techniques. A satisfactory linear free energy relationship for reactions of the probe ions with Mn(H(2)O)(6)(2+) and Mn(III)TMPyP(5+) required consideration of both the basicity and solvent affinity of the probe ligands: log(k(app)) = log(k(0)) + alpha pK(a) + beta log(K(ext)), where k(0), alpha, and beta are metal complex dependent parameters and pK(a) and K(ext) represent the measured Bronsted acidity and water/n-butanol extraction constant for the probe anions, respectively. Reactions of Mn(H(2)O)(6)(2+) were relatively insensitive to changes in ligand basicity (alpha = -0.04) and favored the more hydrophilic anions (beta = -0.54). These observations are consistent with a dissociative ligand exchange mechanism wherein the outer-sphere complex is stabilized by hydrogen bonding between Mn(H(2)O)(6)(2+) and the incoming ligand. In contrast, reactions with Mn(III)TMPyP(5+) are accelerated by decreases in both the basicity (alpha = -0.43) and the hydrophilicity (beta = +0.97) of the probe. We conclude that reactions of Mn(III)TMPyP(5+) are also dissociative but that the aromatic groups of the porphyrin provide a hydrophobic environment surrounding the ligand binding site in Mn(III)TMPyP(5+). Thus, the probe/water solvent interactions must be significantly weakened in order to form the outer-sphere complex that leads to ligand substitution. This work demonstrates the utility of phosphorus relaxation enhancement (PhoRE) techniques for characterizing the second coordination sphere environment of metal complexes leading to ligation and will allow comparison of the second coordination spheres of Mn(H(2)O)(6)(2+) and Mn(III)TMPyP(5+) to those of other metal complexes.  相似文献   

18.
The self-assembly of dinuclear triple helical lanthanide ion complexes (helicates), in aqueous solution, is investigated utilizing laser-induced, lanthanide luminescence spectroscopy. A series of dinuclear lanthanide (III) helicates (Ln(III)) based on 2,6-pyridinedicarboxylic acid (dipicolinic acid, dpa) coordinating units was synthesized by linking two dpa moieties using the organic diamines (1R,2R)-diaminocyclohexane (chxn-R,R) and 4,4'-diaminodiphenylmethane (dpm). Luminescence excitation spectroscopy of the Eu3+ 7F0-->5D0 transition shows the apparent cooperative formation of neutral triple helical complexes in aqueous solution, with a [Eu2L3] stoichiometry. Eu3+ excitation peak wavelengths and excited-state lifetimes correspond to those of the [Eu(dpa)3]3- model complex. CD studies of the Nd(III) helicate Nd2(dpa-chxn-R,R)3 reveal optical activity of the f-f transitions, indicating that the chiral linking group induces a stable chirality at the metal ion center. Molecular mechanics calculations using CHARMm suggest that the delta delta configuration at the Nd3+ ion centers is induced by the chxn-R,R linker. Stability constants were determined for both ligands with Eu3+, yielding identical results: log K = 31.6 +/- 0.2 (K in units of M-4). Metal-metal distances calculated from Eu3+-->Nd3+ energy-transfer experiments show that the complexes have metal-metal distances close to those calculated by molecular modeling. The fine structure in the Tb3+ emission bands is consistent with the approximate D3 symmetry as anticipated for helicates.  相似文献   

19.
We have isolated the 1:1 Ln:[alpha-2-P2W17O61]10- complexes for a series of lanthanides. The single-crystal X-ray structure of the Eu3+ analogue reveals two identical [Eu(H2O)3(alpha-2-P2W17O61)]7- moieties connected through two Eu-O-W bonds, one from each polyoxometalate unit. An inversion center relates the two polyoxometalate units. The Eu(III) ion is substituted for a [WO]4+ unit in the "cap" region of the tungsten-oxygen framework of the parent Wells-Dawson ion. The point group of the dimeric molecule is Ci. The extended structure is composed of the [Eu(H2O)3(alpha-2-P2W17O61)]214- anions linked together by surface-bound potassium cations. The space group is P, a = 12.7214(5) A, b = 14.7402(7) A, c = 22.6724(9) A, alpha = 71.550(3), beta = 84.019(3)degrees, gamma = 74.383(3), V = 3883.2(3) A3, Z = 1. The solution studies, including 183W NMR spectroscopy and luminescence lifetime measurements, show that the molecules dissociate in solution to form monomeric [Ln(H2O)4(alpha-2-P2W17O61)]7- species.  相似文献   

20.
The structure of the extraction complexes of light lanthanides (La(III), Nd(III), Eu(III)) with bis(2,4,4-trimethylpentyl)dithiophosphinic acid (HBTMPDTP) have been characterized with extended X-ray absorption fine structure spectroscopy (EXAFS), IR, and MS; the IR spectrum of the extraction complex of (241)Am with HBTMPDTP has been studied too. The molecular formula of the extraction complexes of lanthanides is deduced to be HML(4).H(2)O (M = La, Nd, Eu; L = anion of HBTMPDTP). The coordination number of Ln(III) in the complexes is 8; the coordinated donor atoms are 7 sulfur atoms from 4 HBTMDTP molecules and 1 O atom from a hydrated water molecule. With the increase of the atomic number of Ln, the coordination bond lengths of Ln-O and Ln-S decrease in the complexes. For La(III), Nd(III), and Eu(III), the coordination bond lengths of Ln-O are 2.70, 2.56, and 2.50, respectively, the coordination bond lengths of Ln-S are 3.01, 2.91, and 2.84, respectively, and the average distances between Ln and P atoms are 3.60, 3.53, and 3.46, respectively. The structure of the extraction complexes of Ln(III) with HBTMDTP is different from that of the Am(III) extraction complex. The results of IR show that there is no water coordinated with Am in the extraction complex. The molecular formula of the complex of Am(III) is deduced as being HAmL(4), and there are 8 S atoms from 4 HBTMPDTP molecules coordinated with Am. Composition and structure differences of the extraction complexes may be one of the most most important factors affecting the excellent selectivity of HBTMPDTP for Am(III) over Ln(III).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号