首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new unsymmetrical end-off, aminomethylated N-methylpiperazine and aminomethylated diethanolamine armed binucleating ligand, 2-[bis(2-hydroxyethyl)aminomethyl]-6-[(4-methylpiperazin-1-yl)methyl]-4-formylphenol (HL), was synthesized by following sequential aromatic Mannich reactions. Mononuclear and binuclear Cu(II), Ni(II) and Zn(II) complexes were synthesized and characterized by elemental and spectral analysis. The EPR spectrum of the mononuclear copper complex shows four hyperfine splittings and the binuclear complex shows a broad signal due to anti-ferromagnetic interaction. The room temperature magnetic moment of the mono and binuclear copper complexes are 1.72 and 2.68 BM, respectively. Variable temperature magnetic moment study of the binuclear copper(II) complex shows weak antiferromagnetic coupling (?2J value, 21 cm?1). The mononuclear Ni(II) complex is square planar and diamagnetic. The six-coordinate binuclear Ni(II) complex shows a magnetic moment of 3.06 BM. Electrochemical studies of the complexes reveal that all mononuclear complexes show a single irreversible one-electron reduction wave and the binuclear complexes show two irreversible one-electron reduction waves in the cathodic region. Catecholase activity of copper(II) complexes using pyrocatechol as a model substrate and the hydrolysis of 4-nitrophenylphosphate using copper(II), nickel(II) and zinc(II) complexes as catalysts showed that binuclear complexes have higher rate constants than corresponding mononuclear complexes.  相似文献   

2.
A new ligand N,N'-bis{3-(2-formyl-4-methyl-phenol)-6-iminopropyl}oxamide (L) and its mono- and binuclear copper(II) complexes have been synthesized and characterized. The ligand shows absorption maxima at 249 and 360 with a weak transition at 455 nm. The ligand was found to be fluorescent and shows an emission maximum at 516 nm on excitation at 360 nm. The electronic spectra of the mono- and binuclear Cu(II) complexes exhibited a d-d transition in the region 520-560 nm characteristic of square planar geometry around Cu(II) ion. The ESR spectrum of the mononuclear complex showed four lines with nuclear hyperfine splitting. The binuclear complex showed a broad ESR spectrum with g=2.10 due to antiferromagnetic interaction between the two Cu(II) ions. The room-temperature magnetic moment values (micro(eff)) for the mono- and binuclear Cu(II) complexes are found to be 1.70 micro(B) and 1.45 micro(B), respectively. The electrochemical studies of the mononuclear Cu(II) complex showed a single irreversible one-electron wave at -0.70 V (E(pc)) and the binuclear Cu(II) complex showed two irreversible one-electron reduction waves at -0.75 V (E(pc)(1)) and -1.27 V (E(pc)(2)) in the cathodic region.  相似文献   

3.
The DNA-cleavage properties of the two copper(II) complexes, [Cu(mbpzbpy)Br(2)](H(2)O)(2.5) (1) and [Cu(mpzbpya)Cl](CH(3)OH) (2), obtained from the ligands 6,6'-bis(3,5-dimethyl-N-pyrazolmethyl)-2,2'-bipyridine) (mbpzbpy) and 6'-(3,5-dimethyl-N-pyrazolmethyl)-2,2'-bipyridine-6-carboxylic acid) (Hmpzbpya), respectively, are reported. Upon coordination to Cu(II) chloride in methanol, one arm of the ligand mbpzbpy is hydrolyzed to form mpzbpya. Under the same experimental conditions, the reaction of mbpzbpy with CuBr(2) does not lead to ligand hydrolysis. The ligand mpzbpya is coordinated to a copper(ii) ion generating a CuN(3)OCl chromophore, resulting in a distorted square-pyramidal environment, whereas with the N(4) mbpzbpy ligand, the Cu(II) ion is four-coordinated in a distorted square planar geometry. Both complexes promote the oxidative DNA cleavage of phiX174 phage DNA in the absence of reductant. The oxidative nature of the DNA cleavage reaction has been confirmed by religation and cell-transformation experiments. Studies using standard radical scavengers suggest the involvement of hydroxyl radicals in the oxidative cleavage of DNA. Although both compounds do convert form I (supercoiled) DNA to form II (nicked, relaxed form), only complex 1 is able to produce small amounts of form III (linearized DNA). This observation may be explained either by the attack of the copper(ii) complexes to only one single strand of DNA, or by a single cleavage event. Statistical analysis of relative DNA quantities present after the treatment with both copper(ii) complexes supports a random mode of DNA cleavage.  相似文献   

4.
Planar binuclear copper(II) complexes generally showed high catalytic activities for the decomposition of hydrogen peroxide compared with the relevant planar mononuclear copper(II) complexes. This result was explained on the assumption that the two-electron transfer occurs between H2O2 molecules via an intervening binuclear copper(II) complex.  相似文献   

5.
Polyether-bridged dihydroxamic acids and their mono- and binuclear copper(II), and cobalt(II) complexes have been synthesized and employed as models to mimic hydrolase in the catalytic hydrolysis of p-nitrophenyl picolinate (PNPP). The kinetics and the mechanism of PNPP hydrolysis have been investigated. The kinetic mathematical model of PNPP cleavage by the complexes has been proposed. The effects of the different central metal ion, mono- and binuclear metal, the pseudo-macrocyclic polyether constructed by the polyethoxy group in complexes, and reactive temperature on the rate of PNPP catalytic hydrolysis have been examined. The results show that the transition-metal dihydroxamates exhibit high catalytic activity in the PNPP hydrolysis; the rate of the PNPP hydrolysis increases with the increase in pH of the buffer solution; the catalytic activity of binuclear complexes is higher than that of mononuclear complexes; the catalytic activity of copper(II) complex is about four times that of the cobalt(II) complex; the pseudo-macrocyclic polyether can synergetically activate H2O coordinated to the metal ion with the central metal ion together and promote the PNPP catalytic hydrolysis.  相似文献   

6.
A series of putative mono- and binuclear copper(II) complexes, of general formulas [CuL](ClO(4)) and [Cu(2)L](ClO(4))(2), respectively, have been synthesized from lateral macrocyclic ligands that have different compartments, originated from their corresponding precursor compounds (PC-1, 3,4:9,10-dibenzo-1,12-[N,N'-bis[(3-formyl-2-hydroxy-5-methyl)benzyl]diaza]-5,8-dioxacyclotetradecane; and PC-2, 3,4:9,10-dibenzo-1,12-[N,N'-bis[(3-formyl-2-hydroxy-5-methyl)benzyl]diaza]-5,8-dioxacyclopentadecane). The precursor compound PC-1 crystallized in the triclinic system with space group P(-)1. The mononuclear copper(II) complex [CuL(1a)](ClO(4)) is crystallized in the monoclinic system with space group P2(1)/c. The binuclear copper(II) complex [Cu(2)L(2c)](ClO(4))(2) is crystallized in the triclinic system with space group P(-)1; the two Cu ions have two different geometries. Electrochemical studies evidenced that one quasi-reversible reduction wave (E(pc) = -0.78 to -0.87 V) for mononuclear complexes and two quasi-reversible one-electron-transfer reduction waves (E(1)(pc) = -0.83 to -0.92 V, E(2)(pc) = -1.07 to -1.38 V) for binuclear complexes are obtained in the cathodic region. Room-temperature magnetic-moment studies convey the presence of antiferromagnetic coupling in binuclear complexes [mu(eff) = (1.45-1.55)mu(B)], which is also suggested from the broad ESR spectra with g = 2.10-2.11, whereas mononuclear complexes show hyperfine splitting in ESR spectra and they have magnetic-moment values that are similar to the spin-only value [mu(eff) = (1.69-1.72)mu(B)]. Variable-temperature magnetic susceptibility study of the complex shows that the observed -2J value for the binuclear complex [Cu(2)L(1b)](ClO(4))(2) is 214 cm(-1). The observed initial rate-constant values of catechol oxidation, using complexes as catalysts, range from 4.89 x 10(-3) to 5.32 x 10(-2) min(-1) and the values are found to be higher for binuclear complexes than for the corresponding mononuclear complexes.  相似文献   

7.
The imidazolate-bridged binuclear copper(II)-copper(II) complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) and related mononuclear complexes [Cu(dien)(H(2)O)](ClO(4))(2), [Cu(dien)(Him)](ClO(4))(2) were synthesized with diethylenetriamine (dien) as capping ligand. The crystal structure of mononuclear [Cu(dien)(Him)](ClO(4))(2) and binuclear complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) have been determined by single crystal X-ray diffraction methods. The mononuclear complex [Cu(dien)(Him)](ClO(4))(2) crystallizes in the orthorhombic, Pca2(1) with a = 9.3420(9) A, b = 12.3750(9) A, c = 14.0830(9) A, beta = 90.000(7)(o) and Z = 4 and binuclear complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) crystallizes in the monoclinic space group P2(1)/a, with a = 15.017(7) A, b = 11.938(6) A, c = 15.386(6) A, beta = 110.30(4)(o) and Z = 4. The molecular structures show that copper(II) ions in an asymmetrically elongated octahedral coordination (type 4 + 1 + 1) and in binuclear complex Cu(1) atom has a asymmetrically elongated octahedral coordination (type type 4 + 1 + 1) and Cu(2) atom exhibits a square base pyramidal coordination (type 4 + 1). The bridging ligand (imidazolate ion, im) lies nearly on a straight line between two Cu(2+), which are separated by 5.812 A, slightly shorter than the value in copper-copper superoxide dismutase (Cu(2)-Cu(2)SOD). Magnetic measurements and electron spin resonance (ESR) spectroscopy of the binuclear complex have shown an antiferromagnetic exchange interaction. From pH-dependent cyclic voltametry (CV) and electronic spectroscopic studies the complex has been found to be stable over a wide pH range (7.75-12.50).  相似文献   

8.
The state of the new antitubercular agent 1,5-bis(amidomethylsulfonyl)pentane in aqueous micellar solution of the nonionic surfactant Bridge 35 and its complexing properties toward copper(II) and iron(III) ions have been studied by spectrophotometry, pH potentiometry (25°C, variable ionic strength), and mathematical modeling. In the concentration range from 5.00 × 10–5 to 1.00 × 10–3 M in the presence of Bridge 35, the title compound exists in a neutral monomeric form. It forms 1: 2 mononuclear and 2: 2 binuclear complexes with copper(II) and 1: 1 and 1: 2 mononuclear and 2: 1 binuclear complexes with iron(III). The most favorable structures of 1,5-bis(amidomethylsulfonyl)pentane and its complexes have been simulated in terms of the density functional theory.  相似文献   

9.
单、双核镍(II)配合物的晶体结构、光谱和磁性   总被引:19,自引:3,他引:19  
报道2个具有三足四齿配体,三(2-甲基吡啶)胺(缩写TPA)的单、双核镍(II)配合物。X射线晶体结构分析结果表明,双核镍配合物(1)晶体(C~3~6H~3~6N~8Ni~2Cl~2).11/6(ClO~4).1/6(OH).8/6(H~2O)属三方晶系,空间群为R-3,a=2.8425(4)nm,b=2.8425(4)nm,c=1.4385(5)nm,α=β=90.00ⅲ,γ=120.00ⅲ,Z=18,最终因子R=0.078,Rw=0.078。单核配合物晶体C~2~0H~1~8N~6NiS~2.0.5(H~2O),属三斜晶系,空间群P1,a=0.9467(1)nm,b=1.5566(3)nm,c=1.5913(3)nm,α=73.59(4)ⅲ,β=87.37(3)ⅲ,γ=76.27(2)ⅲ,Z=4,最终因子R=0.0784,Rw=0.238。双核配合物的变温磁化率(4-300K)数据表明,用最小二乘法进行理论拟合(H=-2JS~1.S~2),得出交换积分J=6.72cm^-^1,θ=-0.60cm^-^1,表明双核镍之间为弱的铁磁相互作用,分子间为弱的反铁磁相互作用。  相似文献   

10.
Magnetic, spectroscopic and superoxide dismutase activity of imidazolate bridged [(Salala)Cu-Im-Cu(Salala)]Na, [(Salala)Cu-Im-Zn(Salala)]Na and [(Salala)Cu-Im-Ni(Salala)]Na (Salala=Salicyledenealiniate, Im=Imdiazolate) are described. The epr and electronic spectra of related mononuclear complexes, viz., [(Salala)Cu-OH(2)] and [(Salala)Cu-ImH] also described. Appearance of a half-field signal in polycrystalline and decrease in mu(eff) per copper(II) ion indicate super exchange coupling between copper(II) ion in [(Salala)Cu-Im-Cu(Salala)]Na binuclear complex. A pH-dependent epr and UV-vis study of 50% aqueous DMSO solution of binuclear complexes suggest that the complexes are stable in narrow pH range.  相似文献   

11.
[structure: see text] Novel "cone conformation" calix[4]arene derivatives, carrying either one or two cyclen (1,4,7,10-tetra-azacyclododecane) moieties at the upper rim, have been synthesized. The hydrolytic activities of the Zn(II) complexes of these calixarenes were studied. A surprising behavior was observed with p-nitrophenylstearate; whereas the bis-cyclenyl-2Zn(II) complex showed negligible hydrolytic activity over the background, the mononuclear complex showed a significant 400-fold rate increase at pH 8.5.  相似文献   

12.
Mono- and binuclear copper(II) saccharinate (sac) complexes containing 2-pyridinepropanol (pypr) have been prepared and characterized by elemental analyses, i.r., u.v.–vis., magnetic measurements and single crystal X-ray diffraction. The copper(II) ion in trans-[Cu(pypr)2(sac)2] has –1 site symmetry and is octahedrally coordinated by two bidentate neutral pypr (N, O) and two sac (O) ligands. The binuclear copper(II) complex, [Cu2(-pypr)2(sac)2], is built up around a centre of symmetry and contains two strongly distorted square–planar coordinated copper(II) ions bridged by two alkoxo groups of the deprotonated pypr ligand, which also coordinates to the copper(II) ions through its nitrogen. In contrast to the mononuclear complex, the sac ligands in the binuclear complex is N-coordinated. The binuclear complex exhibits diamagnetic behaviour. The i.r. spectra and thermal decompositions of both complexes are described.  相似文献   

13.
A binuclear phenoxo- and azido-bridged copper(II) Schiff base complex has been synthesized along with its mononuclear copper-Schiff base analog. The compounds have been characterized by IR spectroscopy and CHN elemental analysis. The single-crystal structure and variable temperature magnetic properties of the binuclear compound have been studied from the X-ray crystallographic data and superconducting quantum interference device magnetometry, respectively. The synthesized crystalline binuclear complex has interesting spectral features that allow it to act as a spectral sensor toward an organophosphorus pesticide which is a potential environmental toxicant coming to the environment as agricultural waste. Although both the mononuclear and binuclear complexes are suitable as sensors for the organophosphorus, the binuclear complex being crystalline is suitable for attaining structural and mechanistic details of the interaction. Density functional theory calculations and ESI MS analysis of the interactions with the binuclear complex suggest that the binding of organophosphorus substrate with 2 occurs through one copper center.  相似文献   

14.
We investigated the complex formation between various underivatized carbohydrates and the binuclear copper(II) complex 1, Cu(2)(bpdpo). A combined approach of UV/vis and CD spectroscopic investigations shows a large discrimination ability of 1 for structurally closely related monosaccharides in alkaline solution. The dominating form of the binuclear copper(II) complex consists of a [Cu(2)L(-)(H)(OH)(2)](+) species between pH 11 and 13, as determined from pH-dependent spectrophotometric titration experiments. The binding strengths of the 1:1 sugar-1 complexes, derived from the biologically important monosaccharides d-mannose (3) and d-glucose (5), is about 1.5 orders of magnitude different at pH 12.40. Moreover, a blue- or a red-shift of the absorption maximum of 1 accompanies the sugar binding and highlights the ability of 1 to discriminate carbohydrates. This phenomenon is due to the number of hydroxyl groups of the particular monosaccharide involved in chelation to the binuclear metal complex.  相似文献   

15.
The zinc(II) complexes reported here have been synthesised from the ligand 4-methyl-2-N-(2-pyridylmethyl)aminophenol (Hpyramol) with chloride or acetate counterions. All the five complexes have been structurally characterised, and the crystal structures reveal that the ligand Hpyramol gradually undergoes an oxidative dehydrogenation to form the ligand 4-methyl-2-N-(2-pyridylmethylene)aminophenol (Hpyrimol), upon coordination to Zn(II). All the five complexes cleave the phiX174 phage DNA oxidatively and the complexes with fully dehydrogenated pyrimol ligands were found to be more efficient than the complexes with non-dehydrogenated Hpyramol ligands. The DNA cleavage is suggested to be ligand-based, whereas the pure ligands alone do not cleave DNA. The DNA cleavage is strongly suggested to be oxidative, possibly due to the involvement of a non-diffusible phenoxyl radical mechanism. The enzymatic religation experiments and DNA cleavage in the presence of different radical scavengers further support the oxidative DNA cleavage by the zinc(II) complexes.  相似文献   

16.
The hydrolytic ability toward plasmid DNA of a mononuclear and a binuclear Zn(II) complex with two macrocyclic ligands, containing respectively a phenanthroline (L1) and a dipyridine moiety (L2), was analyzed at different pH values and compared with their activity in bis( p-nitrophenyl)phosphate (BNPP) cleavage. Only the most nucleophilic species [ZnL1(OH)]+ and [Zn2L2(OH)2]2+, present in solution at alkaline pH values, are active in BNPP cleavage, and the dinuclear L2 complex is remarkably more active than the mononuclear L1 one. Circular dichroism and unwinding experiments show that both complexes interact with DNA in a nonintercalative mode. Experiments with supercoiled plasmid DNA show that both complexes can cleave DNA at neutral pH, where the L1 and L2 complexes display a similar reactivity. Conversely, the pH-dependence of their cleavage ability is remarkably different. The reactivity of the mononuclear complex, in fact, decreases with pH while that of the dinuclear one is enhanced at alkaline pH values. The efficiency of the two complexes in DNA cleavage at different pH values was elucidated by means of a quantum mechanics/molecular mechanics (QM/MM) study on the adducts between DNA and the different complexed species present in solution.  相似文献   

17.
The reactions of the ligand 2-(2-pyridyl)benzthiazole (pbt) with CuBr 2 and ZnCl 2 in acetonitrile produce the complexes [Cu(pbt)Br 2] ( 1) and [Zn(pbt)Cl 2] ( 3), respectively. When complex 1 is dissolved in DMF, complex 2 is obtained as light-green crystals. The reaction of pbt with CuBr 2 in DMF also yields the complex [Cu(pbt)Br 2(dmf)] ( 2) (dmf = dimethylformamide). Complexes 1- 3 were characterized by X-ray crystallography. Complexes 1 and 3 have distorted tetrahedral coordination environments, and complex 2 is constituted of two slightly different copper centers, both exhibiting distorted trigonal bipyramidal geometries. Complexes 1 and 2 cleave phiX174 phage DNA, both in the presence and the absence of reductant. The free ligand pbt does not show any DNA-cleaving abilities. The poor solubility of complex 3 makes it not applicable for biological tests. The occurrence of DNA breaks in the presence of various radical scavengers suggests that no diffusible radicals are involved in the DNA cleavage by complex 1, as none of the scavengers inhibit the cleavage reaction. The DNA-cleavage products are not religated with the enzyme T4 DNA ligase, which is an additional proof that the cleavage is nonhydrolytic. Most probably the cleaving reaction involves reactive oxygen species, which could not be trapped, leading to an oxidative mechanism. An easy oxidation of Cu (II)(pbt)Br 2 to Cu (III) in DMF and the reduction of the same to Cu (I), under similar electrochemical conditions may lead to the in situ activation of molecular oxygen, resulting in the formation of metal solvated nondiffusible radicals able to prompt the oxidative cleavage of DNA. Complex 1 and the pure ligand exhibit remarkable cytotoxic effects against the cancer cell lines L1210 and A2780 and also against the corresponding cisplatin-resistant mutants of these cell lines.  相似文献   

18.
The copper(II) and nickel(II) complexes based on bis(azomethine), which is the condensation product of 1-phenyl-3-methyl-4-formyl-5-mercaptopyrazole with 1,3-diaminopropan-2-ol, are synthesized. Bis-azomethines can form both binuclear and mononuclear complexes in which the hydroxy group is not involved in coordination. The binuclear copper(II) complexes with the acetate and pyrazolate bridges exhibit an antiferromagnetic exchange, which strength is determined by the nature of the bridge (2J = ?154 and ?424 cm?1, respectively). The structure parameters of the coordination spheres of the complexes are determined by X-ray absorption spectroscopy. The structure of the CHCl3 solvate of the binuclear copper(II) complex with the pyrazolate bridge is solved by X-ray diffraction analysis (CIF file CCDC 964655).  相似文献   

19.
The complex formation equilibria involving trans-diamminepalladium(II) chloride (PdII), 1,6-hexanediamine (HDA), and DNA constituents were investigated. The formation constant of all possible mononuclear and binuclear complexes were determined at 25 °C and 0.1 mol⋅L−1 NaNO3. The speciation diagrams of the binuclear complex of PdII–HDA–DNA reveal that these complexes predominate in the physiological pH range and the reaction of the binuclear complex PdII–HDA–PdII with DNA constituents is quite feasible.  相似文献   

20.
A series of new mono and binuclear copper (II) complexes [Cul]X(2)and [Cu(2)lX(2)] where 1 = L(1), L(2) and L(3) are the macrocyclic ligands. In mononuclear complexes the geometry of Cu(II) ion is distorted squareplanar and in binuclear complexes the geometry of Cu(II) is tetragonal. The synthesized complexes were characterized by spectroscopic (IR,UV-vis and ESR) techniques. Electrochemical studies of the complexes reveals that all the mononuclear Cu(II) complexes show a single quasireversible one-electron transfer reduction wave (E(pc) = -0.76 to -0.84V) and the binuclear complexes show two quasireversible one electron transfer reduction waves (E(pc)(1) = -0.86 to -1.01V, E(pc)(2) = -1.11 to -1.43V) in cathodic region. The ESR spectra of mononuclear complexes show four lines with nuclear hyperfine splittings with the observed g(11) values in the ranges 2.20-2.28, g( perpendicular) = 2.01-2.06 and A(11) = 125-273. The binuclear complexes show a broad ESR spectra with g = 2.10-2.11. The room temperature magnetic moment values for the mononuclear complexes are in the range [mu(eff) = 1.70-1.72BM] and for the binuclear complexes the range is [mu(eff) = 1.46-1.59BM].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号